Если граница последнего слоя не известна, можно представить её как лежащей на бесконечности и таким образом найти осадку в пределах этого слоя: $z \to \infty$

$$Y = \frac{2b}{\pi} \left[\ln \left(\sqrt{\eta^2 + 1} + \eta \right) + \eta \ln \left(\frac{1}{\eta} \left\{ \sqrt{\eta^2 + 1} - 1 \right\} \right) \right].$$
(11)

Полученные выше выражения дают большую точность, в сравнении с оригинальной методикой, за счет исключения ошибок, получаемых при интегрировании, так как мы оперируем уже аналитическим решением задачи определения осадки. Также они менее трудоемкие, операции проводятся над целыми, а не элементарными слоями у нас не возникает необходимость разбивать слои на подслои. Таким образом, осадка фундамента, расположенного в системе *n* слоев требует *n* итераций и не зависит от их мощности, как это было в методе послойного суммирования.

Громоздкость полученных выражений затрудняет их ручной счет. Тем не менее их форма позволяет выразить их в виде функций-таблиц, что минимизирует вычислительные трудности. Между тем они более пригодны и для компьютерного счета в таких прикладных математических пакетах как Mathcad, Maple и Matlab.

удк 624.39.239

ВЛИЯНИЕ АМПЛИТУДНО-ЧАСТОТНОГО ДЕЙСТВИЯ СЕЙСМОВЗРЫВНЫХ ВОЛН НА ОСНОВАНИЕ ОХРАНЯЕМОГО СООРУЖЕНИЯ

Н. С. РЕМЕЗ, С. А. КРАЙЧУК Национальный технический университет Украины, г. Киев

Одной из важнейших проблем для действующих горнодобывающих предприятий, размещенных вблизи охраняемых объектов, является определение степени влияния взрывных работ на устойчивость сооружений. Цель работы – исследовать влияние амплитудно-частотных характеристик сейсмовзрывных волн и параметров сооружения на интенсивность ее колебаний.

Для численного моделирования сейсмического действия взрыва на фундамент охраняемого объекта использовался поход, разработанный в работе [1]. Рассматривается движение твердого однородного тела прямоугольной формы, помещенное в неограниченную упругую среду, под действием падающей упругой волны. Начало декартовой системы координат совмещается с центром масс тела, направляющие оси размещены вдоль сторон прямоугольника. Считается, что фронт падающей волны достигает границ тела в момент времени *t*=0.

При *t*<0 тело находится в состоянии покоя, а полный вектор перемещения в среде **u** с компонентами *u* и *v* совпадает с вектором перемещения **u**₊ в падающей волн

$$\mathbf{u} = \mathbf{u} \ (c(t)t - x\sin e + y\cos e), \ (u_{+}(t) = 0, \ t \le 0),$$
(1)

где е – угол между осью x и фронтом падающей волны, c(t) – скорость распространения падающей волны.

Движение тела описывается смещением центра масс u с компонентами u v v и малым углом поворота а.

$$a\mathbf{n}''(t) = \mathbf{R}(t), \ I\alpha_*(t) = \mathbf{M}(t)$$

снулевыми начальными условиями

$$\alpha_{*}(0) = \mathbf{u}_{*}(0) = 0, \ \alpha_{*}(0) = \alpha_{*}(0) = 0,$$

^{где m — масса тела единичной толщины, I — момент инерции тела относительно центра масс, R и M — соответственно равнодействующая и момент напряжений, действующих на тело со стороны упру гой среды, и выражаются через нормальное напряжение σ_n на поверхности тела:}

(2)

(3)

$$R(t) = \bigoplus_{n} \sigma_{n}(t) d\Gamma, \ M(t) = \bigoplus_{n} [\sigma_{n}(t) \times r] d\Gamma$$

Движение среды описывается динамическим уравнением Ляме

$$(\lambda + 2\mu) \operatorname{grad} \operatorname{div} \mathbf{u} - \mu \operatorname{rotrot} \mathbf{u} = \rho \frac{\partial^2 u}{\partial t^2},$$
 (5)

где коэффициенты Ляме λ і μ , а также плотность ρ связаны со скоростями продольных a и поперечных b волн среды формулами: $a^2 = (\lambda + \mu) / \rho$, $b^2 = \mu / \rho$.

Начальные условия задаются в виде (1), а граничные в следующем виде:

$$\tau_{xy}\Big|_{\Gamma} = 0, \ u_n\Big|_{\Gamma} = u_* + \Big[r \times \alpha_* k\Big].$$
(6)

Задача ограничивается изучением только поступательного движения тела.

В результате используемой методики [1] можно решить поставленную задачу с учетом первичных волн дифракции для t < 2H/a. Система волн, образующихся при взаимодействии плоской волны с неподвижным прямоугольным телом, зависит от времени, соотношения сторон s = L / H, угла падения *e*. Окончательно для описания поступательного движения тела получено обыкновенное дифференциальное уравнение с переменными коэффициентами:

$$nu_* + 2l_1(\tau)u_* + 4C_*u_* = \left[2l_0(\tau) - \chi\right]u_+ + \nu u_+, \ n = \rho H^2 / m \,. \tag{7}$$

Величины v и χ определяют порядок прохождения падающей волной углов тела за время t<2H/a и радиус цилиндрических волн, образующихся при этом. Значения индекса при C показывают, какие углы тела взаимодействуют с падающей волной в данный момент времени.

Описание длины участков большей стороны тела, где происходят взаимодействия и отраженной волн имеет вид:

$$l_0(\tau) = \tau H(1/\cos e - 1)$$

при $0 < \tau \le 2$, $s \cos e > 1$ і при $0 < \tau \le 2s \cos e$, $s \cos e < 1$; $l_0(\tau) = 2H[(s - \tau) + s \cos e]$ при $2s \cos e < \tau \le s[1 + \cos e]$;

$$V_0(\tau) = 0$$
 при $s(1 + \cos e) < \tau \le 2$ ($\tau = at / H$).

Описание длины участков меньшей стороны следующий:

$$l_1(\tau) = 2H(s-\tau)$$
 при $\tau \le s$,
 $l_1(\tau) = 0$ при $\tau > s$.

Для учета особенностей сейсмической волны ее скорость c(t) была задана в виде [2]:

$$c(t) = u_m \exp(-\alpha t) \sin(\omega t),$$

где *u_m* – максимальная скорость смещения частиц грунта (экспериментальные данные [3]):

$$u_m = k_u \left(\frac{r}{C_1^{1/2}}\right)^{-\mu_u}, \ k_u = e_{11}\alpha + f_{11}, \ \mu_{12} = e_{12}\alpha + f_{12},$$
(9)

где e_{11}, f_{11} , - экспериментальные коэффициенты, α – процентное содержание воздуха в грунте. Для расчета частоты $\omega = 2\pi / T$ были использованы экспериментальные данные [4]:

$$T = k_R Q_{\pi}^{1/6} (0.015l+1) \left(\frac{r}{Q^{1/3}}\right)^{\nu},$$
(10)

(8)

где k_R , v – экспериментальные коэффициенты, Q_2 – линейная масса скважинного заряда; l – длина заряда, r – расстояние до очага взрыва.

Задача решалась численно методом Рунге-Кутта 4-го порядка точности. На рисунке 1 представзадаче развисимости перемещений от времени основы строения при взрывах зарядов разной массы. Из лены зарядов разной массы. Из рисунка можно сделать взвод, что, чем больше масса заряда, тем больше амплитуда и период колебаний, и соответственно меньше частота охраняемого объекта.

Рисунок 1 - Зависимости перемещений основы строения от времени на расстоянии г = 2000м при взрывах зарядов граммонита 79/21 разной массы: 1 – Q = 20 кг, 2 – Q = 100 кг, 3 - Q = 1000 кг, 4 – Q = 2000 кг, 5 – Q = 3000 кг

На рисунке 2 приведены зависимости перемещений основы от времени на расстоянии r = 1000 м при взрыве заряда граммонита 79/21 массою Q = 2000 кг в суглинках с разними α_1 , который является обратно-пропорциональным плотности грунта. Из анализа рисунка следует, что чем меньше α_1 , то есть, чем плотнее грунт, тем большая амплитуда колебаний основы объекта.

Зависимости перемещений основы строения от времени на расстоянии r = 1000 м в суглинке при взрыве заряда массою Q = 20 кг для разных ВВ приведены на рисунке 3. Из анализа рисунка видно, что максимальная амплитуда смещения достигается при взрыве заряда аммонита № 6 ЖВ. При взрыве заряда игданита такой же массы амплитуда будет в 5,5 раз меньше, а граммонита 79/21 – в 1,6 раз. Такое распределение значений амплитуд колебаний основания сооружения объясняется соответствующим распределением детонационных характеристик ВВ. В таком же порядке возрастания находятся плотность, теплота взрыва и скорость детонации исследуемых ВВ.

Рисунок 2 - Зависимости перемещений основы строения от времени на расстоянии r = 1000 м при взрыве заряда граммониту 79/21 массою Q = 2000 кг в суглинках

Рисунок 3 - Зависимости перемещений основы строения от времени на расстоянии r = 1000м в суглинке при взрыве заряда массою Q = 20 кг для разных BB: 1 – игданит; 2 – граммонит 79/21; 3 – амонит № 6 ЖВ

^с разними α_1 : 1 – α_1 = 0,05; 2 – α_1 = 0,2; 3 – α_1 = 0,4

Таким образом, для исследования амплитудно-частотного действия сейсмовзрывной волны на процесс колебания основы охраняемого объекта было проведено численное моделирование взаимодействия упругой волны с прямоугольным твердым телом. Были исследованы особенности колебаний основы в зависимости от массы заряда, типа ВВ и характеристик гранта. Продолжением данной работы может бать исследование колебательного процесса системы «грунт – основание объекта» для различных типов грунтов и внедрение результатов для определения сейсмобезопасных параметров ведения взрывных работ.

СПИСОК ЛИТЕРАТУРЫ:

1 Рилько, М. А. О движении в упругой среде жесткого прямоугольного тела под действием плоской волны / М. А. Рилько // Механика твердого тела. – 1977 – № 1. – С 158–164.

2 Денисюк И. И. Управление сейсмовзрывным импульсом при строительстве в структурно-неустойчивых грунтах / И. И. Денисюк, В. И. Рогожникова; под ред. А. А. Вовка, А.Г. Смирнова // Применение энергии взрыва на земляных работах. – 1979. – С. 195–202.

3 Лучко, И. А., Волны в неводонасыщенных грунтах при взрывах цилиндрических зарядов взрывчатых веществ различных типов / И.А. Лучко, Н.С. Ремез. Ин-т гидромеханики АН Укравины. – Киев, 1991. – 15 с. – Рус. – Деп.. в УкрНИ-ИНТИ 11.11.1991. – № 1436 – Ук 91.

4 Бойко, В. В. Оценка сейсмобсзопасности сооружений при воздействии на них взрывных волн с учетом их спектральных характеристик / В. В.Бойко, А. А. Кузьменко, Т.В. Хлевнюк. // Вісник Національного технічного університету України НТУУ "КПІ", Сер. Гірництво. – 2008. – № 16. – С. 3–13.

УДК 539.3

ЦИКЛИЧЕСКОЕ ДЕФОРМИРОВАНИЕ ТРЕХСЛОЙНОГО СТЕРЖНЯ ПРИ НЕЙТРОННОМ ОБЛУЧЕНИИ

Д. М. САВИЦКИЙ

Московский государственный университет управления, Российская Федерация

Радиационное облучение твердых тел сопровождается возникновением дополнительной объемной деформации θ_l , изменением упругих и пластических характеристик материала.

Рассмотрим однородное изотропное тело, занимающее полупространство $z \ge 0$. Если на границу (z = 0) параллельно оси z падают нейтроны с одинаковой средней энергией и интенсивностью $\varphi_0 =$ const, нейтрон/(м²c), то интенсивность потока нейтронов, доходящих до плоскости z = const, будет $\phi(z) = \phi_0 e^{-\mu z}$. Величина μ называется макроскопическим эффективным сечением и имеет порядок 1/м. К моменту времени *t* через сечение *z* пройдет поток:

$$I(z) = \phi_0 t e^{-\mu z} \,. \tag{1}$$

Приближенно можно считать, что изменение объема материала прямо пропорционально потоку I(z) и, следовательно, $\theta_I = BI(z)$, где B – опытная константа, которая в зависимости от энергии нейтронов и облучаемого материала может быть порядка $10^{-28}-10^{-24}$ м²/нейтрон. Величина $I_0 = \varphi_0 I$ дает суммарный поток нейтронов на единицу площади поверхности тела. В реакторах φ_0 имеет порядок $10^{17}-10^{18}$ нейтрон/(м²c), $I_0 - 10^{23}-10^{27}$ нейтрон/(м²), θ_I до 0,1.

На поверхности тела (z = 0) влияние радиации на предел текучести σ_y вполне удовлетворительно описывается формулой радиационного упрочнения:

$$\sigma_{y} = \sigma_{y0} \left[1 + A \left(1 - \exp(-\xi I_{0}) \right)^{1/2} \right],$$
(2)

где σ_{y0} – предел пластичности необлученного материала; A, ξ – константы материала.

На глубине z эта формула принимает вид

$$\sigma_{y} = \sigma_{y0} \left[1 + A \left(1 - \exp(-\xi I) \right)^{1/2} \right]$$