O. T. TEMIRTASOV, S. K. TURUSBEKOV PROBLEMS OF CREDIT TECHNOLOGY TRAINING

Having joined the Bologna Agreement without a preliminary stage the Republic of Kazakhstan faced numerous problems in the system of secondary and higher education. In this article the causes and consequences of the transition and the ways for getting over it are being examined.

Получено 21.04.2009

ISBN 978-985-468-707-0. Механика. Научные исследования и учебно-методические разработки. Вып. 4. Гомель, 2010

УДК 624.04:534.1

М. ХАЛЕЦКИЙ Варшавский университет естественных наук (SGGW), Польша

ПРИМЕНЕНИЕ КОМПЬЮТЕРА ДЛЯ ПРОВЕРКИ РАБОТ СТУДЕНТОВ

Проверка работ студентов является неотъемлемым элементом работы преподавателя вуза. Она представляет собой кропотливую и трудоёмкую задачу, особенно по отношению к домашним работам с учетом того, что студенты обычно сдают их в последний момент. Неоценимую помощь в решении этой проблемы может оказать компьютер. Удачное его использование позволяет во много раз сократить время проверки, и одновременно делает возможным подробный поиск ошибок в работах студентов (как в домашних, так и выполненных на коллоквиумах). Также с его помощью можно составлять примеры, решаемые на занятиях, что сокращает время подготовки к ним.

В работе представлены возможности пакетов EXCEL и MATLAB, которые может использовать преподаватель предмета "Механика конструкции". Нужно подчеркнуть, что здесь дело не в том, чтобы решить задачу данным методом и получить только результат, но и в том, чтобы получить способ, до некоторой степени автоматический (исключительно по введению исходных данных). Это является спецификой программ, представленных здесь, – тем, что отличает их от профессиональных вычислительных программ, таких как ROBOT или RM-Win.

Расчет рам методом перемещений (DSM) – применение EXCEL.

В Варшавском университете естественных наук преподают метод перемещений (англ. Displacement Method, Direct Stiffness Metod, DSM) с учётом продольных сил. Во многих учебниках этими силами пренебрегают [1, 2], что упрощает расчёты, но с другой стороны осложняет компьютеризацию метода.

В методе DSM выделяются свободные (подвижные) и неподвижные узлы, а среди свободных узлов – внутренние и опорные. В методе DSM, учитывающем продольные силы, внутренним узлом является место соединения нескольких (не менее двух) стержней. На рисунке 1 представлен внутренний узел "k", который расположен по соседству с узлами "i", "j", "r", "m" (неза-

Рисунок 1 – Силы в узле

висимо от того внутренние, они или нет). Направления усилий в узле приняты следующие:

- продольные силы: от узла;

 поперечные силы: соответствуют повороту вокруг узла против часовой стрелки;

 – моменты: указывают поворот вокруг узла по часовой стрелке.

На основе принятой таким образом системы узловых нагрузок составляются уравнения равновесия узла. Находящиеся в этих уравнениях внутренние усилия представляются с помощью трансформационных формул (рисунок 2). Каж-

дая такая формула состоит из обобщенной силы, соответствующей внешней нагрузке, и из обобщенных сил, соответствующих обобщенным перемещениям узлов: *и* (горизонтальные), *v* (вертикальные) и ϕ (углы поворота). Как известно, формулы для вычисления этих сил зависят от закрепления концов стержня. Обобщенные силы (см. рисунок 2) подставляются в уравнения равновесия, вследствие чего составляется система 3*n* уравнений (*n* – число элементов).

Рисунок 2 – Трансформационные формулы: для балки двухсторонне (а) и односторонне заделанной (б)

После определения этих неизвестных находятся усилия N, T, M во внутренних узлах.

Описание программы представлено на примере расчета рамы (рисунок 3). Она составлена для конструкции с 3 внутренними узлами (рисунок 5). После ввода данных (модуль Юнга Е, размеры поперечного сечения), на основе которых программа вычисляет жесткости ЕЈ и ЕА, вписываются основные данные касающиеся длины, нагрузки и опор стержня. Каждый узел может соединять 4 стержня (как на рисунке 1): верхний, нижний, левый и правый. Рама на рисунке 1 имеет только два внутренних узла, поэтому часть таблицы, которая касается узла 3, заполнена нулями. Опорные связи описаны кодами. Обозначая узел кодом, принимаем, что 1 соответствует блокированию движения в данном направлении, 0 – свободу; кроме того, цифры вписываются по очереди, соответствующей перемещениям u, v, ϕ . Поэтому коды принимают такие значения, которые показаны на рисунке 4. Например, 110 обозначает блокирование движения в направлении *и* и *v*, а свободу – в направлении ф; 10 происходит от обозначения 010 (которого EXCEL бы не воспринял, поэтому 0 опущен): блокирование движения в направлении v, свободу – в направлении и и ф. Стержень между внутренними узлами имеет код 2.

УЗЛОВ

Рисунок 3 – Рассмотренная в примере рама

В программе предусмотрено, что один стержень нагружен двумя сосредоточенными силами и распределённой нагрузкой, постоянной по всей длине стержня (студенты в домашних работах получают аналогичное нагружение, но программу можно дополнить иными силами или распределённой нагрузкой). Положительными считаются силы и нагрузки, направленные вниз (для горизонтальных стержней) или вправо (для вертикальных). Для силы вводится координата точки приложения, которая отсчитывается от узла. Поэтому для узла 1 отрезок ригеля между узлами 1 и 2 (внутренними – поэтому код стержня 2) – это "элемент справа" (от узла) и нагружен левой силой $T_1 = P$,

приложенной на расстоянии 2 м от узла, правой $T_2 = P$ – приложенной на расстоянии 4 м; затем для узла 2 – это "элемент слева" (от узла) и нагружен левой силой $T_1 = P$ приложенной на расстоянии 4 м от узла, правой $T_2 = P$ – приложенной расстоянии 2 м. Обе силы положительные.

В соответствии с исходными данными, введенными так, как показано на рисунке 5, вычисляются обобщенные силы от внешних нагрузок (рисунок 6). Для узла 1 мы получаем обобщенные силы (рисунок 7). Потом программа подсчитывает коэффициенты при перемещениях в трансформационных формулах (рисунок 8). Штрих обозначает перемещение, относящееся к соседнему узлу (как видно из рисунка 2, трансформационные формулы зависят от перемещений начала и конца стержня, а также от перемещений в двух смежных узлах).

	Microsoft Excel - metprzem											
	<u>P</u> lik <u>E</u> dycja	Widok Wst	aw <u>F</u> ormat	Narzędzia 🖸	ane <u>O</u> kno I	omo <u>c</u> Adob	e PDF					
		AB	19 X 🗈	A 0.	. Σ. f	AI (1)	? » Ar	ial CE	- 10	- B	/ U ■	= = =
			↓ 00 E			- 21 -			. 199			
1 Th	🖳 узел	п эле	мент с.	лева от	узла							
-	JZ		C	D	ł	E	0	L	1	1	L V	1
7	<u> </u>			U	f	F	G				<u>~</u>	L
8	Wezeł 1)			Wezeł 2				Wezeł 3			
9	elemen	t z lewej			element	z lewej			element	t z lewej		
10	długość:	kod:	EA [kN]:	EJ [kNm ²]	dług ość:	kod:	EA [kN]:	EJ [kNm ²]	długość:	kod:	EA [kN]:	EJ [kNm ²]:
11	3	110	1687500	8789,063	6	2	1687500	8789,063	0	0	1687500	8789,063
12	T ₁ =	0	T ₂ =	0	T ₁ =	60	T ₂ =	60	T1=	0	T ₂ =	0
13	x _{T1} =	0	x _{T2} =	0	x _{T1} =	2	x _{T2} =	4	x _{T1} =	0	x _{T2} =	0
14	=p	7	-		q=	0						
15		Длин	a ////////////////////////////////////					лемент	справа	a or y3	Jia	
16	element	z prawej			element	z prawej		2	element	z prawej	-	
17,	diugosc	kod:	EA [kN]:	EJ [kNm ⁴]	dług ose:	kod-	EA [kN]:	EJ [kNm ²]	długość:	kod:	EA [KN]:	EJ [kNm*]:
10	т	2	100/500 T -	6769,063	э т –	0	1667500 T -	0/09,003	U T -	0	100/500 T -	0/09,003
15	11-	00	12-	00	11-	0	12-	0	11-	0	12-	0
20	XT1=	2	x _{T2} =	4	X _{T1} =	7	XT2=	U	X _{T1} =	0	x _{T2} =	0
22		й//////к	од ///////				Э	лемент	ниже уз	ла		
23	elemen	t z dołu			elemen	t z dołu			elemen	t z dołu		
24	długość:	kod.	EA [kN]:	EJ [kNm ²]	długość:	kod:	EA [kN]:	EJ [kNm ²]	długość:	kod:	EA [kN]:	EJ [kNm ²]:
25	7	100	1620000	12150	5	111	1620000	12150	0	0	1620000	12150
26	T1=	0	T2=	0	T1=	0	T2=	0	T1=	0	T ₂ =	0
27	XT1=	0	x _{T2} =	0	x _{T1} =	0	XT2=	0	x _{T1} =	0	XT2=	0
28	q=	0			q=	7			01-	0		
29							Э	лемент	выше уз	вла		
30	elemen	t z góry			element	z góry		2	elemen	t z gory		
31	długość:	kod:	EA [kN]:	EJ [kNm ⁴]	długość:	kod	EA [kN]:	EJ [kNm ²]	długość:	kod:	EA [kN]:	EJ [kNm ²]:
32	U T	0	1620000 T -	12150	U	0	1620000 T -	12150	U T	0	1620000 T -	12150
33		0	12-	0	0.17	0	12-	0	11-	0	12-	0
34	XT1=	0	x _{T2} =	U	x _{T1} =	0	x _{T2} =	0	x _{T1} =	0	x _{T2} =	U
35	q=	U			=p	U			=p	U		
30		kurat and		um2 /								
Cet	P PL Ar	KUSZI / AR	uszz / Ark	usza /					4			
GOL	owy											

Рисунок 5 – Вид экрана с введенными данными о внутренних узлах с 3*n* неизвестными перемещениями в каждом

	Microsoft Excel - metprzem									
8	<u>Plik E</u> dycja <u>W</u> idok V	W <u>s</u> taw <u>F</u> ormat <u>N</u> ar	zędzia <u>D</u> an	e <u>O</u> kno F	omo <u>c</u> Ado	be PDF				
D		a 🖤 🔏 📭 💼	10-	🤮 Σ f	AL 10	2 °	Arial CE		10 🗸 B	I
					21	- -				
1 P										
	J20	= 0	660	бшенні	не сил	I OT PU	ешних	Harnvaok		
3	AB	Si	v przywez	lowe od ol	bciażeń rz	eczywisty	ch:	narpysok		
3 M	юменты си	лы	Wezel 2		DelqLett 12	CCLIMIST	Wezeł 3			
39	enement z le	wer sily:	_	element z l	ewej - siły:		\triangleright	element z lewej	- siły:	
40	od T ₁ 0	Surga:	od T ₁	-44,4444	su	ma:	od T ₁	0	suma:	
41	od T ₂ 0	Tone -13,125	od T ₂	-15,5556	T _{01L} =	-60	od T ₂	0	T _{01L} = 0	
42	od q: -13,125		od q:	0	2	-	od q:	0		-
43	element z lewe	ei - momenty:	ele	ement z lew	ej - momen	t <u>v:</u>	ele	ement z lewej - n	iomenty:	-
44	od T ₁ : 0	sums	od T ₁	53,33333	su	ma:	od T ₁	0	suma:	
45	od T ₂ 0	Mon = 7,875	od T ₂	26,66667	M _{01L} =	80	od T ₂	0	Monu= 0	_
46	od q: 7,875		p bo	0			od q:	0		-
4/	element z pr	awej - sity:		element z p	rawej - siły		227	element z prawe	<u>I - Słły:</u>	2
40	00 11: 44,44444	suma.	00 11	0	su	ma.	00 11	0	suma.	-
49	00 12 15,55550	1 ₀₁₀ = 60	od I2	0	01L=	21	od I ₂	0	1 _{01L} = 0	
50	element z praw	ei momentic	.p 00	Z1	uei momer	atur.	00 Q:	U ment z prawej	momenty	57
52	od T53 3333	suma:	or T.	0	su	ma:	od T.	0	suma:	
53	od T 26 6667	M. = -80	od T.	0	M	_21.5	od T.	0	M = 0	
54	00 12 -20,0001	m01000	od o:	-31.5	.m01L=	-01,0	od a:	0	mo1L- 0	
55	element 2 c	lołu - silv:	00 4.	element z dołu - siłv:			element z dołu - siły:			
56	od T ₁ 0	suma:	od T.	0	su	ma:	od T ₁	0	suma:	
57	od T- 0	T = 0	od T.	0	T. =	-17.5	od Ta	0	T= 0	
58	od a: 0	10121	od a:	-17.5	FUTE		od o:	0	-030 0	-
59	element z dołu	- momenty:	E	ement z doł	u - moment	V:	el	ement z dołu - m	omenty:	
60	od T ₁ 0	suma:	Nd Tr	0	su	ma:	od T ₁	0	suma:	
61	od T ₂ 0	M ₀₁₀ = 0	od T ₂	0	Mozu=	14,58333	od T ₂	0	M _{03C} = 0	
62	od q: 0		od q:	14,58333			od q:	0	3	
63	element z g	ióry - siły:		element z	gán nihe			element 7 gény	sily:	1
64	od T _{1:} 0	suma:	od T ₁	0	от рас	спредел	іённой	нагрузки	suma:	
65	od T ₂ 0			0	<u> </u>	· ·	od T ₂	0	T _{01L} = 0	
66	od q: 0	от правой с	осредот	оченис	ой силы	Ι	od q:	0		
67	от перой сост	епотоцециой	CHILL	ement z gór	ry - moment	<u>v:</u>	el	ement z góry - m	omenty:	2
68		ледоточенной	CHIJIDI	0	SU	ma:	od T ₁	0	suma:	_
69	od T ₂ 0	M _{01L} = 0	od T ₂	0	M _{01L} =	0	od T ₂	0	M _{01L} = 0	_
70	od q: 0		p bo	0			p bo	0		
1	Arkusz1	Arkusz2 / Arkusz)						4	***

Рисунок 6 – Вид экрана с вычисленными обобщенными силами

Рисунок 7 – Силы в узле 2

4	~ 🗖		2	ABÇ/	v		s I	5	a .	~ 4	8	AI	40	D	>>	NRAD	ce.
			g	×	Φ		5	- · · ·		2 1	*	z+		Q	•	Alla	95
,	1 12 2																
	G75																
_	015	B		C		D	15	F	1	E)	1	G		н			ŝ.
0	~	U		6		Wzonu	÷r.	L aneforr	naovin	10	12	0		- 11			2
4	Wezeł 1		-			102019		ansion	nacyn	IC.	-						
4	element 7	lewei	-		1		1		1		1						
	N.	cencon	1	10		0	1.1		-		<u> </u>	_	-		-		-
5	PV=	562500	U	*		0	U				1						
0	1=	-2929,69	Q	1772. 1842.00	9	10,5025	V	+	-	0	0	<u></u>			0	V.	_
1	M=	6/89,063	9	T.	1	2929,69	V	+		0	Q.	+			U	¥.	
0	M-	2812E0		-		281250			-		-						
30	T=	-1464.84	0	1		488 281	V	+	-14	64.84	m	4		488 28	13	v ¹	
11	M=	5859 375	0	45	1	464 844	V	+	202	9 688	m	4		-1464	84	v. V ^a	
12	element z	dołu	1×		-	1949944			202	-,	Ŧ		- 17	1100	1000	-	
33	N=	231428.6	u	+	-	0	U'		-								
34	T=	0	0	40		0	V	+ .		0	0	+			0	V ⁴	
25	M=	0	m	4.		0	1.	+		0	O,	+			0	U ⁴	
26	element 7	nány	(¥	52520	- 1	~	1	100	-	0	1	- 22			-		_
27	N=	gory 0	ii	4		0	ir.				-						
38	T=	0	0			0	V	4	1	0	100	20			0	U ¹	
89	M=	0	0	4.5		0	v	+	-	0	(Q ⁴)	+			0	v	
90	///////////////////////////////////////		11	//////	/////	/////////	Ì		<i>Ì//////</i>	//////	111	/////	//////	//////	UII)	11111	
1	Wezeł 2		1								1111				~~~	~~~~~	111
12	element z	lewei							1								
13	N=	281250	u	4		281250	ir.		1		-						
4	T=	-1464 84	0	40	4	88 2813	V	+	-14	64 84	m°.	325	1	-488.2	81	v'	
95	M=	5859.375	0	+		1464.84	v	+	292	9.688	O'	+		1464.8	344	v	
96	element z	prawej	T		1				1		1		8		1		
97	N=	0	u	+		0	u"						11		1		
88	T=	0	φ	+0	1	0	V	+	1	0	φ°.	20	1		0	V'	
9	M=	0	φ	14-2		0	V	2+3		0	Φ.	÷.			0	V	
00	element z	dołu									1						
01	N=	324000	U	+		0	U"						1				
02	T=	-2916	φ	(40)		-1166,4	V	+		0	φ	30			0	V'	
03	M=	9720	φ	+		2916	V	+		0	Φ,	÷.	1		0	V	
04	element z	góry		5.0	1	1.5			1		2		- 8				
05	N=	0	U	+		0	U		-	-							
06	1=	0	φ	+>>	_	0	V	÷	-	0	φ°.	÷	_		0	V	
07	M=		91		un	00000	V		hum	0	911	1111	un		0	Vinn	11
80			111	//////	/////	///////////////////////////////////////	111			//////	411	/////		//////		//////	
09	wezer 3		-		1				11				13				

Рисунок 8 – Вид экрана с трансформационными формулами

При расчетах трансформационных формул и обобщенных сил, использованы уравнения, представленные на рисунке 2. В соответствии с рисунком 8 трансформационные формулы для узла 2 имеют вид (с учётом обобщенных сил из рисунка 6 – в соответствии с рисунком 7):

- для элемента слева:

$$\begin{split} N_{2L} &= 281250u_2 - 281250u_1; \\ T_{2L} &= -60 - 1464, 84\varphi_2 + 488, 28v_2 - 1464, 84\varphi_1 - 488, 28v_1; \\ M_{2L} &= 80 + 5859\varphi_2 - 1464, 84v_2 + 2929, 69\varphi_1 + 1464, 84v_1; \end{split}$$

- для элемента справа - обобщенные силы: $N_{2P} = 0$, $T_{2P} = 21$, $M_{2P} = -31,5$; - для элемента снизу:

$$N_{2D} = 324000u_2;$$

$$T_{2D} = -17,5 - 2916\varphi_2 - 1166,4v_2;$$

$$M_{2D} = 14,583 + 9720\varphi_2 + 2916v_2;$$

После суммирования соответствующих коэффициентов получается система уравнений, показанная на рисунке 9. Эта система решается с помощью определителей. После вычисления неизвестных программа подставляет их в соответствующие трансформационные формулы, что делает возможным расчет внутренних сил в узлах. Согласно рисунку 9 для рамы из нашего примера эти силы такие, как на рисунке 10.

						Міс	rosoft Exce	l - metprzei	n				
	<u>Plik</u> <u>E</u> dycja	Widok Wst	aw Eormat	Narzędzia	ane <u>O</u> kno F	omo <u>c</u> Adob	e PDF						
D	🔗 🔲 é	a a a	** X 🖻		🔍 Σ f	. Al 🛍	🕢 😤 Ar	ial CE	- 1	о - в	7 U 🔳		
	-	,,	· · · · -						столбо	ец пере	мешен	ий	
	Аларица к				коэффі	коэффициентов				V2TOP			
1	A	B	C	D	F	F	G	Н		y 55101		1	
126		_	-	2	$\overline{}$		-			_ن_	5	1	
127	U1	V1	φ1	u ₂	V2	φ2	U3	V3	φ3				
128	843750	0	0	-281250	0	0	0	0	0	U1		0	
129	0	232893,4	-1464,84	0	-488,2813	1464,844	0	0	0	V ₁		73,125	
130	0	-1464,844	14648,44	0	-1464,844	2929,688	0	0	0	φ1		72,125	
131	-281250	0	0	282416,4	0	2916	0	0	0	U2		-17,5	
132	0	-488,2813	-1464,84	0	324488,3	-1464,84	0	0	0	V2	=	81	
133	0	1464,844	2929,688	2916	-1464,844	15579,38	0	0	0	φ2		-63,0833	
134	0	0	0	0	0	0	0	0	0	U ₃	-	0	
135	0	0	0	0	0	0	0	0	0	V3		0	
136	0	0	0	0	0	0	0	0	0	φ3		0	
137												\smile	
138	detg=	2,63E+30		u1 [m]=	-4,17E-06		u ₂ [m]=	-1,25E-05		u3 [m]=			
139				v1 [m]=	0,000385		v ₂ [m]=	0,000254		v ₃ [m]=			
140				φ1 [rad]=	0,006026		φ ₂ [rad]=	-0,005192		φ3 [rad]=			
141				φ1 [deg]=	0,345271		φ ₂ [deg]=	-0,2975		φ ₃ [deg]=			
142				1.			BH	утренни	Ie I	10.0			
143						Sily	VOU				столбег	действи-	
144	Wezeł 1	in the second se		12000247	Sector Sector	E E	yen	пия в уз.	ал	те	прных	сил в узпах	
145	element z	1ewej	element z	prawej	element z o	20fU 80 11821	N=	gory		10	JIDIIDIA	enti b ystian	
147	T=	-30 40356	T=	58,71465	T=	05,11021	T=	0					
148	M=	59,71068	M=	-59,7107	M=	0	M=	0					
149	Węzeł 2												
150	element z	lewej	element z	prawej	element z o	lołu	element z	góry	5		5	S	
151	N=	-2,344528	N=	0	N=	82,28535	N=	0					
152	1= M=	-01,20535	1= M=	-31.5	1= M=	-2,34453	1= M=	0		-	-		
154	141-5	01,42210	TVI-	-51,5	IVI-	-33,3220	101-	0		-		÷	
155						i.							
KK		kusz1 / Ark	cusz2 / Ark	usz3 /						4			

Рисунок 9 – Вид экрана с системой уравнений и значениями сил в узлах

Рисунок 10 – Внутренние силы в узлах рамы вместе с внешней нагрузкой

Вычисление частот свободных колебаний балки – применение MATLAB

Частоты свободных колебаний балки определяются по методике, основанной на интеграле Мора [3]. Балку, масса которой распределена непрерывно по ее длине, преобразуем в невесомую с сосредоточенными массами. Их расположение преподаватель разъясняет студентам на занятиях. Используются следующие данные: структура балки, модуль Юнга материала балки, момент инерции сечения, сосредоточенная масса. Структуру балки определяет совокупность сосредоточенных масс и опор (вектор bel), а также координат, определяющих положение каждой из них (вектор wsp). Сосредоточенная масса имеет код 0, опора – 1, заделка – 2. Например, нижеследующее векторы определяют балку, показанную на рисунке 11.

bel=[2 0 1 0 0 1 0] wsp=[0 2 4 5.5 8.5 10 12]

Рисунок 11 – Расчетная схема балки

В дальнейших расчётах (например амплитуд) также задаются начальные условия в виде столбца скоростей или начальных перемещений каждой из масс. С использованием векторов bel и wsp программа вычисляет коэффициент пропорциональности, определяющий массу каждой *m_i* по отношению к массе всей балки. Этот параметр назван частичной массой. Чтобы рассчитать частоты свободных колебаний, балку нужно нагружать по очереди силами, аналогичными силам инерции, равными 1. Каждая из этих сил соответствует *i*-той частичной массе. Нагружение единичными силами вызовет в балке реакции в опорах и момент в заделке. Программа определяет эти реакции с помощью метода начальных параметров. Левые части систем уравнений зависят от расположения опор, а также от первого и последнего выражения вектора bel, поэтому для каждой единичной силы они одинаковые. Это матрица $\mathbf{MX}_{\mathbf{l}}$. Правые стороны систем уравнений собраны в матрицы \mathbf{MXp} , в которой *i*-тый столбец относится к *i*-той частичной массе. Системы уравнений для расчета реакций от каждой силы инерции $B_i = 1$ имеют вид:

для $B_1 = 1$			для $B_2 = 1$
$\begin{cases} \frac{1}{2}M_A \cdot 4^2 \\ \frac{1}{2}M_A \cdot 10 \\ R_A + R_B \cdot \\ M_A + 4R_A \end{cases}$	$\frac{1}{6} - \frac{1}{6} R_A \cdot 4^3 = -$ $\frac{1}{6} R_A \cdot 10^3 - + R_C = 1,$ $B + 10 R_C = 2 \cdot 1;$	$\frac{\frac{1}{6} \cdot 1 \cdot 2^{3}}{\frac{1}{6} R_{B} \cdot 6^{3}} = -\frac{1}{6} \cdot 1 \cdot \frac{1}{6} \cdot 1$	8 ³ , $\begin{cases} \dots = 0, \\ \dots = -\frac{1}{6} \cdot 1 \cdot 4, 5^{3}, \\ \dots = 1, \\ \dots = 5, 5 \cdot 1; \end{cases}$
для <i>B</i> ₃ = 1			для <i>B</i> ₄ = 1
$\begin{cases} \dots = 0, \\ \dots = -\frac{1}{6} \cdot 1 \\ \dots = 1, \\ \dots = 8, 5 \cdot 1; \end{cases}$	·1,5 ³ ,		$\begin{cases} \dots = 0, \\ \dots = 0, \\ \dots = 1, \\ \dots = 12 \cdot 1. \end{cases}$
Поэтому м	атрица МХ _I име	ет вид:	
8.0000	-10.6667	0	0
50.0000	-166.6667	-36.0000	0
0	1.0000	1.0000	1.0000
1.0000	0	4.0000	10.0000,
а матрица МХ	р – вид:		
-1.3333	0	0	0
-85.3333	-15.1875	-0.5625	0
1.0000	1.0000	1.0000	1.0000
2.0000	5.5000	8.5000	12.0000

Имея матрицы **MX**₁ и **MXp**, можно вычислить реакции. Положительные реакции направлены вверх, активные силы ($B_i = 1$) аналогично, положительные моменты – против часовой стрелки. Силы расставлены по возрастанию координат, перед ними – момент в заделке. Содержимое этих матриц можно просмотреть в файле .txt во фрагменте:

INDET	CERMINATE	BEAM:				
Mass	Initial	Clamp Moment		For	ces	
Nι	umber					
1.	.0000	0.6667	0.6250	-1.0000	0.4028	-0.0278
2.	.0000	-0.3281	-0.2461	1.1055	-1.0000	0.1406
3.	.0000	-0.2344	-0.1758	0.5039	-1.0000	0.6719
4 .	.0000	0.3333	0.2500	-0.6944	1.4444	-1.0000

Это обозначает, что нагрузка, например, силой $B_2 = 1$ даёт реакции, приведенные на рисунке 12.

Рисунок 12 – Реакции в балке от нагрузки $B_2 = 1$

Потом определяются реакции в статически определимых системах. Эти системы составляем следующим образом: заделку заменяем шарнирнонеподвижной опорой, в среднюю опору врезаем шарнир, который соединяет пролёты (для примера на рисунке 11 такая система показана на рисунке 13). В результате система оказывается разделенной на простые, статически определимые балки. Реакции (начиная от крайней левой) и нагружения $B_i = 1$ можно увидеть в файле .txt во фрагменте:

Рисунок 13 – Балка, преобразованная в статически определимую систему

Это обозначает, что нагружение, например, силой $B_2 = 1$, даёт реакции, представленные на рисунке 14.

Рисунок 14 – Реакции в балке от нагрузки B₂ = 1 в статически определимой системе

Если балка статически определимая – матрицы во фрагментах INDETERMINATE BEAM и DETERMINATE BEAM идентичные.

Следующий шаг: это составление уравнений изгибающих моментов. Балку разбиваем на участки, границы которых определяются массами и опорами, несмотря на точку приложения, на которой массе приложены силы B_i , и на то, что балка статически неопределимая или определимая. Поэтому, число и длина участков всегда одинаковая. Нагрузка систем силами B_i даёт уравнения, которые можно увидеть во фрагменте INDETERMINATE BEAM или DETERMINATE BEAM.

(INDETERMINATE BEAM)

Moment equ	ations:				
Masses nr					
1	2				
RANGES:		Х	ABS. TERM	Х	ABS. TERM
0	2.0000	0.6250	-0.6667	-0.2461	0.3281
2.0000	4.0000	-0.3750	1.3333	-0.2461	0.3281
4.0000	5.5000	0.0278	-0.2778	0.8594	-4.0937
5.5000	8.5000	0.0278	-0.2778	-0.1406	1.4063
8.5000	10.0000	0.0278	-0.2778	-0.1406	1.4063
10.0000	12.0000	-0.0000	-0.0000	-0.0000	-0.0000
(DETERMINA	TE BEAM)				
Moment equ	ations:				
Masses nr					
1 2					
RANGES:		Х	ABS. TERM	Х	ABS. TERM
0	2.0000	0.5000	0	0	0
2.0000	4.0000	-0.5000	2.0000	0	0
4.0000	5.5000	0	0	0.7500	-3.0000
5.5000	8.5000	0	0	-0.2500	2.5000
8.5000	10.0000	0	0	-0.2500	2.5000
10.0000	12.0000	0	0	0	0

Эти распечатки нужно читать следующим образом:

столбцы 1 и 2: границы участков;

– столбцы 3 и 4: коэффициент при x и свободный член для уравнений моментов, соответствующих силе B_i (здесь – B_1);

– столбцы 5 и 6: коэффициент при x и свободный член для уравнений моментов, соответствующих силе B_{i+1} (здесь – B_2), – если она существует. Поэтому уравнения изгибающих моментов, например, для сил B_1 и B_2 в статически неопределимых системах таковы, как на рисунке 15, а в статически определимых – как на рисунке 16.

Рисунок 15 – Уравнения изгибающих моментов для статически неопределимых систем, нагруженных силами B₁ = 1 и B₂ = 1

Рисунок 16 – Уравнения изгибающих моментов для статически определимых систем, нагруженных силами $B_1 = 1$ и $B_2 = 1$

Если балка статически определимая – распечатки уравнений изгибающих моментов идентичны.

Уравнения изгибающих моментов служат для вычисления коэффициентов *a_{ii}* из интеграла Мора (для *EJ* = const):

$$a_{ij} = \frac{1}{EJ} \sum_{k=1}^{n} \int_{l_1}^{l_2} \overline{M}_i^{(k)} M_j^{(k)} dx ,$$

где n – число характерных участков изгибающих моментов; l_1 , l_2 – границы участков; $\overline{M}_i^{(k)}$ – уравнение изгибающих моментов для статически неопределимой системы в k-том участке от нагружения силой B_i ; $M_j^{(k)}$ – уравнение изгибающих моментов для статически определимой системы на k-том участке от нагружения силой B_j .

Таким образом, интегрируемые уравнения возникают из перемножения соответствующих уравнений изгибающих моментов. В файле .txt интегрируемые уравнения находятся во фрагменте INtegrated EQUATIONS. Например, для коэффициента a_{12} получаем:

For coef	ficient			
12				
RANGE		X2	Х	ABS. TERM
0	2.0000	0	0	0
2.0000	4.0000	0	0	0
4.0000	5.5000	0.0208	-0.2917	0.8333
5.5000	8.5000	-0.0069	0.1389	-0.6944
8.5000	10.0000	-0.0069	0.1389	-0.6944
10.0000	12.0000	0	0	0

что обозначает, что *а*₁₂ имеет вид:

$$a_{12} = \frac{1}{EJ} \sum_{k=1}^{n} \int_{l_1}^{l_2} \overline{M}_1^{(k)} M_2^{(k)} dx =$$

= $\frac{1}{EJ} \left[\int_{4}^{5,5} (0.0208x^2 - 0.2917x + 0.8333) dx + \int_{5,5}^{10} (-0.0069x^2 + 0.1389x - 0.6944) dx \right].$

Значения этих интегралов подсчитаны во фрагменте AFTER INTEGRATION. После двух столбцов, обозначающих границы участков, выводимые столбцы составлены в порядке коэффициентов: a_{11} , a_{12} , a_{13} , ..., a_{21} , a_{22} , a_{23} , ..., и т. д. Для балки на рисунке 10 получаем:

For coe 11 2	fficient	nr: from	- to			
RAN	IGE			ELEMENTS		
0	2.0000	0.1667	0	0	0	-0.0000
2.0000	4.0000	0.3333	0	0	0	-0.3281
4.0000	5.5000	0	-0.1172	-0.0391	0.0521	0
5.5000	8.5000	0	-0.2031	-0.1719	0.2292	0
8.5000	10.0000	0	-0.0078	-0.0234	0.0521	0
10.0000	12.0000	0	0	0	0.0000	0

Это означает, что здесь находятся коэффициенты: a_{11} , a_{12} , a_{13} , a_{14} , a_{21} :

$$\begin{split} a_{11} &= \frac{1}{EJ} \left(\int_{0}^{2} \overline{M}_{1} M_{1} dx + \int_{2}^{4} \overline{M}_{1} M_{1} dx \right) = \frac{1}{EJ} (0,1667 + 0,333); \\ a_{12} &= \frac{1}{EJ} \left(\int_{4}^{5,5} \overline{M}_{1} M_{2} dx + \int_{5,5}^{8,5} \overline{M}_{1} M_{2} dx + \int_{8,5}^{10} \overline{M}_{1} M_{2} dx \right) = \\ &= \frac{1}{EJ} (-0,1172 - 0,2031 - 0,0078); \\ a_{21} &= \frac{1}{EJ} \left(\int_{2}^{4} \overline{M}_{2} M_{1} dx \right) = \frac{1}{EJ} (-0,3281). \end{split}$$

Как видим, $a_{11} = a_{21}$. Коэффициенты a_{ii} дают характеристический определитель

$$\Delta = \begin{vmatrix} a_{11} - \frac{1}{m_1 \omega^2} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \frac{1}{m_2 \omega^2} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \frac{1}{m_n \omega^2} \end{vmatrix}$$

Для упрощения расчета из каждой строки определителя Δ мы выносим 1/EJ за его знак. Обозначим также числитель каждого члена a_{ii} через a'_{ii} и

 $e = \frac{EJ}{m\omega^2}$. Получаем:

$$\Delta = \left(\frac{1}{EJ}\right)^n \begin{vmatrix} a'_{11} - \frac{m}{m_1}e & a'_{12} & \dots & a'_{1n} \\ a'_{21} & a'_{22} - \frac{m}{m_2}e & \dots & a'_{2n} \\ \dots & \dots & \dots & \dots \\ a'_{n1} & a'_{n2} & \dots & a'_{nn} - \frac{m}{m_n}e \end{vmatrix} = \left(\frac{1}{EJ}\right)^n \Delta'.$$

Новый определитель $\Delta' = \mathbf{A'} - e \mathbf{M}$, где:

$$A' = \begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ a'_{21} & a'_{22} & \dots & a'_{2n} \\ \dots & \dots & \dots & \dots \\ a'_{n1} & a'_{n2} & \dots & a'_{nn} \end{bmatrix}, \qquad \qquad M = \begin{bmatrix} \frac{m}{m_1} & 0 & \dots & 0 \\ 0 & \frac{m}{m_2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \frac{m}{m_n} \end{bmatrix},$$

а уравнение $\Delta' = \det(\mathbf{A'} - e \mathbf{M}) = 0$ (характеристическое уравнение) позволяет найти обобщённые собственные значения е матрицы А' относительно матрицы М. В MATLAB такие собственные значения вычисляем командой eig(mat1,mat2); в нашем случае – mat1 = A', mat2 = M.

Эти преобразования необходимы, поскольку файл .txt показывает только определитель матрицы А'; для рассчитываемой балки он имеет вид:

```
Characteristic determinant (without masses):
 0.5000 -0.3281 -0.2344 0.3333
 -0.3281 1.2393 1.0459 -1.5000
 -0.2344 1.0459 1.8721 -3.0000
 0.3333 - 1.5000 - 3.0000 9.3333
```

Итак
$$\Delta = \left(\frac{1}{EJ}\right)^4 \begin{vmatrix} 0,5-3e & -0,3281 & -0,2344 & 0,3333 \\ -0,3281 & 1,2393-4e & 1,0459 & -1,5 \\ -0,2344 & 1,0459 & 1,8721-4e & -3 \\ 0,3333 & -1,5 & -3 & 9,3333-6e \end{vmatrix}$$

потому что (для $m_1 = \frac{1}{3} m$, $m_2 = m_3 = \frac{1}{4} m$, $m_4 = \frac{1}{6} m$):

$$\Delta = \begin{vmatrix} \frac{0.5}{EJ} - \frac{1}{\frac{1}{3}m\omega^2} & -\frac{0.3281}{EJ} & -\frac{0.2344}{EJ} & \frac{0.3333}{EJ} \\ -\frac{0.3281}{EJ} & \frac{1.2393}{EJ} - \frac{1}{\frac{1}{4}m\omega^2} & \frac{1.0459}{EJ} & -\frac{1.5}{EJ} \\ -\frac{0.2344}{EJ} & \frac{1.0459}{EJ} & \frac{1.8721}{EJ} - \frac{1}{\frac{1}{4}m\omega^2} & -\frac{3}{EJ} \\ \frac{0.3333}{EJ} & -\frac{1.5}{EJ} & -\frac{3}{EJ} & \frac{9.3333}{EJ} - \frac{1}{\frac{1}{6}m\omega^2} \end{vmatrix}.$$

Студент должен записать характеристическое уравнение, поэтому программа его тоже выводит – в виде вектора коэффициентов, расставленных в порядке понижения показателя степени *е*. Затем рассчитываются частоты

```
свободных колебаний по формуле \omega = \sqrt{\frac{EJ}{me}}.
```

```
Characteristic equation and its roots:

288.0000 -720.0156 341.8606 -50.8110 2.2582

1.9318

0.3422

0.1433

0.0828

Natural frequencies:

7.1949

17.0950

26.4133

34.7615
```

Таким образом, уравнение имеет вид:

 $288e^4 - 720,0156e^3 + 341,8606e^2 - 50,8110e + 2,2582 = 0.$

Программу можно легко расширить модулем, который рассчитывает коэффициенты формы собственных колебаний и перемещения масс при колебательном движении.

СПИСОК ЛИТЕРАТУРЫ

1 Dylag, Z. Mechanika budowli. T. 1 / Z. Dylag, E. Krzeminska-Niemiec, F. Filip. – Warszawa: PWN, 1980.

2 Brunarski, L. Kurs mechaniki budowli. Ch. 2 / L. Brunarski. – Warszawa: Fundacja "Rozwoj SGGW", 1994.

3 Dylag, Z. Wytrzymalosc materialow / Z. Dylag, A. Jakubowicz, Z. Orlos. – Warszawa: WNT, 1997.

M. CHALECKI COMPUTER FOR STUDENTS' SOLUTIONS CHECK

The checking of students' solutions is the intrinsic element of a lecturer's job. It is often a painstaking and time-consuming task, especially with homework because the students usually hand it in at the very last moment. A computer offers an invaluable help. Being properly used it can considerably reduce the check time and at the same time enable to find errors in student's papers (both in homework and class tests). Moreover, it serves as a helper in making examples calculated in the classes which shortens the lecturer's preparation time.

The paper presents the possibilities of EXCEL and MATLAB tools which can be used by a lecturer of "Mechanics of constructions".

Получено 26.10.2009

ISBN 978-985-468-707-0. Механика. Научные исследования и учебно-методические разработки. Вып. 4. Гомель, 2010

УДК 531.8

М. С.ЧЕРНЕЦКИЙ Военная академия Республики Беларусь, Минск

МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИЗЛОЖЕНИЯ КУРСА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ

Указаны некоторые пути улучшения качества подготовки специалистов. Рациональная связь между математическими и техническими дисциплинами позволит не только улучшить качество подготовки, но и скоординировать планы обучения.

Непрерывное развитие техники требует современных подходов к решению инженерных задач, которые связаны с механическим движением и взаимодействием материальных объектов.

Теоретическая механика является основополагающей всех общеинженерных дисциплин. Исходя из этого, следует, что подход к изложению механики должен быть воспринимаемым слушателями.

Основой теоретической механики являются законы Ньютона, которые были установлены на основе обобщения множества наблюдений, опытов и были подтверждены практикой человечества.

При изложении курса, его отдельных разделов, необходимо в понятной форме выделять главное, определяющее сущность происходящих механиче-