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FORMULATION OF THE CONSTRUCTION TOPOLOGICAL
OPTIMIZATION PROBLEM FOR RAILWAY STRUCTURES
CONSIDERING THE LIMITATIONS ON THE STRENGTH

The main purpose of the paper is the development of the topological structural optimi-
zation scientific basis in accordance with the complicated optimization problems of rolling

14



stock and special railway equipment structures. The theory review and analysis of the cur-
rent state of structure topological optimization is executed. The classical variation and FE
formulation of the topological optimization problem are considered in the paper. The
SIMP-method idea and peculiarities of its realization were presented. The problem of
stress-constrained structure mass minimization is considered. The problems caused by tak-
ing into account the strength limitations were considered in the paper in details. The scien-
tific novelty is the development of the optimal design theory adapted to the rolling stock
and special railway equipment structures problems.

Introduction. Topological optimization as the independent scientific research
field starts from the paper of talented Australian inventor Michell [16], which was
published in 1904. In [16] Michell for the first time obtained the optimal criterion
for material distribution in trusses. In 1960 on the second ASCE conference on
electronic computation Schmit suggested his revolutionary idea of objects and
systems designing with minimal cost due to mathematical programming methods
[22]. Schmit idea rapidly enough began to be used in the size and shape structural
optimization and later in the topological structural optimization [15].

Numerical mathematical programming methods in topological optimization
were intensively investigated from 80-th [3]. Analysis from [20] shows that for the
numerical FE topology optimization problems solution the following mathemati-
cal programming methods are used:

» gradient methods including the sequential linear programming methods, the
sequential quadratic programming methods, the convex linearization methods and
method of moving asymptotes (MMA) are the most widely applied [2];

» nongradient methods with two popular algorithm groups: genetic [10] and
evolutionary [26];

* optimality criteria methods (heuristics methods) [23].

Gradient methods have the most distribution in the modern optimization soft-
ware (Altair HyperWorks OptiStruct, Dassault Systems Simulia ABAQUS, AN-
SYS and others) now. MMA proposed by Svanberg [25] can be considered sepa-
rately from the large quantity of gradient methods since the algorithm of this
method has been based on the number of calculation optimization models. The
MMA idea is the special type of the convex approximation of the objective func-
tion and the strength limit functions [8, 25].

Thus, topological optimization is the conceptual structural design and im-
provement tool, which requires post-processing and detailed analysis of the ob-
tained results.

Classical formulation of topological optimization problem. The main idea
of the structural topological optimization is to obtain the optimal material distribu-
tion in the preliminary defined domain. Classical formulation of the problem is the
structural pliability minimization (the stiffness maximization) under volume or
mass limits [5].

It is considered some design domain Q (figure 1) in a space R* or R’ which
is the part of deformed solid body. In the design domain we define the body
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forces f, the boundary distributed load
I''(T'; ¢ I' =0Q) and the section boundary

conditions I',. The design optimization
problem can be defined as the problem of
finding the optimal value of the stiffness
tensor E;y(x), which can vary in the
Q domain.

The energy bilinear form (the internal
virtual work of an elastic body at the equi-
1 — a design point; 2 —a point with no material; librium u and for an arbitrary virtual dis-

3 —apoint with fixed material placement v) can be written as:

Figure 1 — The generalized shape design

for the problem of optimal material distri- a(u,v) = IEijkl (x)sij(u)skl (»)dQ,
bution in a two-dimensional domain Q
1| Ou; au,‘ . . . .
where & (u) = 5 8_+ — | are the linearized strains; and the load linear form
X X . X .
J i

in the following view:

1) = [ fudQ+ [wds,
Q T,
where the problem of the material pliability minimization (global stiffness maxi-
mization) takes the form:
min [(u),
ueU,E
if ap (u,v)=1(v),YvelU - the equilibrium equation in the variation form,
EeE,,;
where U — the space of kinematically admissible displacement fields; £,, — the set
of admissible stiffness tensors.
The index E indicates that the bilinear form a; depends on the design variables.
Formulation of the FE topological optimization problem. The design do-
main Q is divided in N finite elements. The design variable
p.(x)e(0,1], e=1,..., N corresponds to each finite element and characterizes the

relative material density [4]. These design variables create the vector p € R" . The

dxd

structural global stiffness matrix Iz(pe) eR depends on design variables,

where d is the number of degrees of freedom. For the external load vector
]; e R? , the displacement vector is u e R? , and the main equilibrium equation
has the following view:

k(pe)ﬁ = ];
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Considering the linear elastic features of material, the strain tensor and the
stress tensor can be written through the kinematic equation and the state equation
respectively:

1 . ~ —
81']' :E(ui’j +uj,i); Gij :Dijklgkl’

where D — the state matrix, which depends on Poisson ratio p and Young
modulus ];"0.

SIMP is the most popular solving method for the structural topological optimi-
zation problems nowadays. In the base of SIMP is the conception of Solid Iso-
tropic Microstructure (or Material) with Penalization. Bendsoe in [4] proposed the
fundamental idea of this conception. Firstly the term “SIMP” was proposed by
Rozvany in [21] but it was used later.

The SIMP approach implies the replacement of integer variables by continuous
variables and obtaining the discrete solution of 0-1 values [4, 5, 8]. It means that
the optimal design must have only domains with material — “1” and without mate-
rial — “0”. The intermediate values of the density function p,(x) in the interval
(0, 1] should be penalized.

The material properties for each finite element are expressed through the pen-

alty Young modulus ];"e in the following form:

E,=plEy,
where };"0 — Young modulus for solid isotropic material, p — penalty parameter,
which must be larger than 1 for the density function penalizing in the 0 <p <1
interval [4]. In [5] Bendsoe recommends to take penalty parameter p larger or
equal 3 (p > 3) as the intermediate values of the density function in the result op-

timal design don’t arise. Thus, the penalty function in SIMP is realized without
any explicit penalty schemes.

When we use the penalty Young modulus ]Z"e the global stiffness matrix has

explicit dependence on design variables and relative density of each finite
element:

N
K@P)=Y plky,
e=1
where k, — the finite element stiffness matrix for the solid isotropic material
Young modulus E,.

The structure pliability minimization (stiffness maximization) for the given
volume or mass is equivalent to the structure deformation energy in the equilib-
rium state. The FE topological optimization problem formulation has the follow-
ing view:
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min C(u) —i'Ki ;

N
Kl—l:f, m(ﬁ):zpesmo; O<pminspeS1:

e=l
where C — the structure pliability; u# — the global displacement vector; K — the

global stiffness matrix; ]7 — the global external load vector; m, — limit of the struc-

ture maximal mass; p.;, — minimum relative density (usually O(107) [5]).

Formulation of topological optimization problem considering the limita-
tion on the strength. The topological optimization problem statement for the
structure mass minimization with taking into account stress-constrained condition
is more realistic then classical statement for minimization of structure pliability.
Such formulation has the following view:

N
minm(ﬁ):Zpe; (D

e=1

F(o,)

Kii = f;
! [o]

<L 0<ppin $pe <1,

where F(c,) — the function that define stress distribution in the design domain

finite elements; [c] — the allowable stress value for the given material.
Mises criterion is often used for the calculation of the equivalent stress values
6, for isotropic materials:

2 1 2 2 2 2 2 2
GvMZE[(Gll_GZZ) +(0py —033)" +(033 —011) ]+3(cip + 023 +031) .

Peculiarities of problem caused stress limitation. The fact of taking into ac-
count stress limitation causes some difficulties for topological optimization prob-
lems. Usually structural topological optimization problems have the convergence
problems depending on the stress features [14].

The stress singularity problem in structures topological optimization was firstly
discovered while solving the truss design problems. In [7] it was shown that n-
dimensional space of allowable structure designs has singular subspaces with less
then n dimension. Therewith the global optimal design of the structure is often in
such singular subspace [11, 14]. Nonlinear programming algorithms cannot identify
such domains, so there are only local optimal designs of the structure as a result.

To solve the problem of relaxed singularity limitations on stress it is necessary
to remove degenerate subspaces from the space of admissible projects and, as a
result, to get a global optimum of the problem by the methods of nonlinear
programming. For the topological optimization of frame and truss structures some
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relaxation methods were used, for example, e-relaxation method and method of
the smooth envelope functions (SEF). Later these methods were adapted to design
problems for continuous structures [13].

The idea of e-relaxation is that the traditional view of stress limitations

(GvM _[6])pe <0

is replaced by changing the lower limit for small value € > 0. Thus stress condition
will have the following view:

(o —[oDpe.<e.

The e-relaxation of strength limitations allows to get the relative material den-
sity p, with greater than zero sufficiently small values. Thus the singular sub-

spaces are excluded. In [24] it was shown that if the global optimum of the
problem can be obtained by using the e-relaxation, it is not guaranteed that the
solution of the initial problem with not relaxed restrictions on the strength will
converge to the global optimum.

Allowable stress criterion in structural topological optimization problems.
When we consider the stress-limited topological optimization problem the follow-
ing difficulty is the local character of stress limitations. In the continual formula-
tion of the problem the stress limits must be considered for each material point.
In the discrete formulation of the problem (for example FE) the number of mate-
rial points is finite but still very large for the practical realization. There are sev-
eral methods for considering the stress limitations in the topological optimization
problems.

One of the simplest approaches is the control of the stress values for the given
nodes of every finite element. This method is called the local approach and is used
in [19]. The local approach requires the large quantity of calculations as we con-
sider that the number of stress limits is comparable with the number of the finite
elements. It is possible to reduce the number of the limitations if calculations of
the sensitivity are made only for active limitations.

Other approach consists of reduction of all local stress limitations into one
global constraint. This method is called the global approach and is used in [9]. As
the aggregation function the p-norm function is used:

[ rlp
F(%)J
OpN = I 5 (2)
pE=sli
or Kreisselmeier-Steinhauser function (KS-function) [18] is used:

]

:—1n| Zexp( (Ge)JJ . 3)
e 1
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Both function (8) and (9) are smooth and differentiable. Parameter p controls
the level of smoothness.

The disadvantage of global constraints method is significantly worse control
over the level of local stresses in comparison with the method of local constraints.
The advantages of the global constraints method is the reduction of computational
operations performed during the optimal design process.

The third approach implies the grouping of the finite elements into the blocks
and using the separate aggregation function for every block. Such method is called
the block-aggregate approach and is used in [17].

In this approach the constraints for every block can be written in the following form:

Omax = max(mj . 4)
[o]

When we use the block-aggregate approach the number of constraints is consid-
erably reduced in comparison with the local approach of the local stress level
control. The disadvantage of this approach is that function (11) is non differentiable.

In the end we must pay attention to a the new approach proposed in [11]. This
method is called the cluster approach. According to this approach the finite ele-
ments which have the comparable stress level are grouped into the clusters by
some rule (the stress level technique or the distributed stress technique).

Filtering of design variables. Limits on the stress nonlinearly significantly
depend on the project type. The change of the relative density p, in the neighbor-
hood regions changes the stress level. This effect becomes stronger in the critical
regions with big stress gradients (the stress concentration), for example in the
sharp corners. This problem is called mesh-dependency problem [5, 11, 13]. Thus
the topology optimization problem statement and its solution algorithm must ex-
clude the convergence problems.

The density filtering approach [6] was proposed and later proved for the ill-
posed topological optimization problem. The filtered density variables p, are cre-
ated by taking the weighted average of the neighborhood design variables x,. The

1 design variables filter is written in the following
—— form:
< 2 Zw X
/ I
o) 1 F’)’— =\ jEQe
LN Pe(¥) =—<5—>
o= D)
JeQ,

where Q, — the domain (for e finite element) con-

sisted of all elements j which lie in the circle of 7,

radius and measured between gravity centers of

Figure 2 — The visualization of ~ the neighborhood elements (Figure 2); w;, —
design variables filter average weighted coefficient.

1 — FE-mesh; 2 —e design variable;
3 —j design variable
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The average weighted factor is obtained according with the following form [6]:

n—r;
W] = u .
)

Note that the weight is equal to zero for all variables which are outside the

domain Q,. From the view of method realization, the weighted matrix W is en-
tered into the relative material density function in the following form:

n(’?
Pe(¥) =D Wepx; .
Jj=1

Formulation of topological optimization problem for the rolling stock and
special railway equipment structures considering strength constraints. The
creation of strength-constrained structures with minimal mass is important for the
railway engineering industry. The classical equations for topological optimization
problem are unacceptable for the rolling stock and special railway equipment
problems because the creation of the most rigid structure with only volume or
weight constraints is not expedient.

The structure strength of railway vehicles is estimated by two criterions: the al-
lowable stress criterion and the fatigue strength safety factor criterion [1]. The
strength is estimated on the design stage and on the stage of prototype testing.

We later consider the stress-constrained structural topological optimization
problem statement which equivalent to the problem with the allowable stress crite-
rion. The problem of structure fatigue strength estimating hasn’t been investigated
enough yet. The above literature review showed that there is a very small number
of papers devoted to the problem of structure topological optimization applied to
the rolling stock and special railway equipment structures. Thus, the problem of
structure topological optimization for rolling stock and special equipment of
railways based on the strength of complex constraints is a relevant scientific and
technical issue nowadays. The complex limitation on the structure strength in-
cludes the allowable stress criterion and the fatigue strength safety factor criterion.

If the structure is under the action of the non-central fatigue cycle then the
structure normal stress o, less the mean stress o,,. The number of fatigue cycles by
the structure life time is N > Ng, where Ng=2-10° cycles — the abscissa of the
fatigue plot breaking point. Non-central fatigue cycle can be transformed into the
fully symmetric cycle form. Such symmetric cycle becomes equivalent to the non-
central fatigue cycle under breaking action. The peak stress of the fully symmetric
cycle is:

W
Gue =04 +VopOpm :6a+766m, (5)

where K — the endurance limit reduction coefficient. This coefficient takes into
account such factors acting on the endurance strength as stress concentration, the
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scale factor, the surface quality, the operation factor, the technological strengthen-
ing methods; ysp :\z{—c — the asymmetry cycle influence coefficient for the

structure with actual dimensions and stress concentrations; Yy — the asymmetry

cycle influence coefficient for the smooth laboratory pattern:

2671 —Op
\I'[G = >
S0

G_1, 6o — the endurance limits for the smooth laboratory pattern with the fully
symmetric load cycle and the pulsating load cycle respectively.

The calculations for the pattern under the fatigue strength safety factor by the
stresses is executed by the following formula:

Ag :mz[n], (6)

68
where [6] — the allowable stress; 6. — the equivalent operating stress obtained by
the hypothesis of strength.
The allowable stress [o_,] is the endurance limit for the symmetric cycle in this
case:

O-1
cl=|lo_j|l=—. 7
(o] =[o]=— (7)
Thus the fatigue strength safety factor under the linear stress mode can be de-
fined by equations (5) and (7) included in (6):
O-1

[671] 7 O] _ (8)
VYo

n = = =

5 =
G 4e Ko, +ys0,,

c,+

a m

th

The expression (8) for the fatigue strength safety factor was proposed in 1940
by S. V. Serensen and R. S. Kinasoshvili. This expression was widely used in the
industry particularly in the railway industry. Today in the railway industry the for-
mula (8) is the base expression for the fatigue strength estimate when we don’t have
the peak stress distribution bar chart and the material endurance curve parameters.

The mean cycle stress o, in (8) is defined by the stresses under the static load
action and quasistatic forces in the tractive, braking modes and movement in
curves:

OSm =0st ¥ O /br T Ocury>

where o,, — the stress under vertical static load action; o, — the stress caused by
tractive or braking load action; c,,, — the stress by movement in curves.
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The peak cycle stress o, for the railway vehicles is
G, = Kdvcm . (9)
where K, — the vertical dynamics factor obtained by the dynamics test results.
After substituting of (9) into (8) the following strength condition is obtained:
o >1.
[n]o,,(KupK +ves)

Let us make the following substitute

o1

[n](Kde + \VG)
Thus the fatigue strength safety factor strength condition is transformed into
the traditional view of the allowable stress condition:

[6]. (10)

. (11)

The peculiarity of the obtain equation (11) is that such facts as the allowable
safety factor of the fatigue strength [n], the asymmetry cycle influence coeffi-
cient y,, the endurance limit reduction coefficient K and the vertical dynamics
factor K, are taken into consideration.

The allowable safety factor of the fatigue strength [n] is equal to 2,0 for the
rolling stock and special railway equipment. The asymmetry cycle influence coef-
ficient y; =03 is for 5, >0.

The endurance limit reduction coefficient can be calculated by the following
expression:

_ KKy

ym

K

x> (12)

where K| — the coefficient of the material heterogeneity influence; K, — the influ-
ence coefficient of the internal stresses; y — the coefficient of the scale factor in-
fluence; m — the coefficient of the surface interaction; By — the effective strength
reduction factor.

For example, for the molded parts with the lateral dimension near 300 mm
y=0,55,K,=1,3, K, =1,0. The coefficient m of the surface interaction is equal to
0,85 if the operation of machine is rough. For the cored beam with the rectangular
cross section B is equal to 1,0. So the calculated from the equation (12) endurance
limit reduction coefficient K is equal to 2,78.

The endurance limit o_, for the smooth laboratory pattern made from the Steel
09G2 GOST 19281-89 under the fully symmetric load cycle is equal to 240 MPa.
The normative value of the vertical dynamics factor K,, for the railway vehicles is
equal to 0,35 for the first suspension level. Thus the fatigue strength of the struc-
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ture is ensured in the course of N cycles for the railway vehicles if the allowable
stress is [6] = 94,3 MPa in accordance with equation (10).

The insertion of the fatigue strength criterion in the topological optimization
problem does not change the problem formulation as this criterion is reduced to
the allowable stress constraint.

The feature of this complex strength-constrained problem statement is the cal-
culating the allowable stress according to (10).

Thus the formulation of the topological optimization problem for the rolling
stock and special railway equipment with taking into account strength limitations
has the similar to (1) view:

N
min m(p) = Y p,
e=1
under conditions of
F(o,)

K——:<f—"
! [o]

<1, 0<ppin $pe =1,
where [c] — the allowable stress for the case of the structure fatigue strength ensur-
ing under N cycles:

(MK gK +vg)

Conclusions. There were analyzed the main historical steps of creating the
structural topological optimization theory. The classical variation and FE struc-
tural topological problem statements are presented in the paper. The features of
SIMP method concept and realization are considered.

In the paper we obtained the equation for the stress-constrained topological op-
timization problem in the mass minimization form. Particularly the singular prob-
lem definition and approaches for problem solving are considered. The mesh-
dependency problem and the filtering of design variables are considered in the
paper. The methods of the stress limitations inserting in the equations for the topo-
logical optimization problem are considered.

Thus the review and analysis of the current state of the structural topological
designing showed that this field of investigations had been given actively devel-
oped at the last time and it is of great interest today.

There were used such modern design tools as topological optimization for the
problems of the rolling stock and special railway equipment structures creating
and improvement which are relevant problems nowadays.

In the paper the statement for complex strength-constrained topological opti-
mization problem for the rolling stock and special railway equipment structures
was proposed. It includes the allowable stress criterion and the fatigue strength
safety factor criterion.

[o]
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In the paper we show that the fatigue strength safety factor criterion can be re-
duced to the allowable stress criterion under the stipulation that the allowable
stress is chosen special.
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b. M. TOBT

MOCTAHOBKA 3AJIAYM TOIMOJIOTMYECKOM ONITUMM3ALIUM
KEJE3HOJIOPOXKHBIX KOHCTPYKIIUI
C YYETOM OI'PAHUYEHHUI HA TIPOYHOCTH

I'maBHas 1enp craTby 3aKJIIOYACTCS B Pa3BUTHHM HAYYHBIX OCHOB TEOPHM TOIOJIOIAYe-
CKOM ONTUMM3ALUN KOHCTPYKIUI B 4aCTH PELICHUS CIOXKHBIX 3a/1a4 YCOBEPLICHCTBOBAHUS
KOHCTPYKLUI OJBMKHOIO COCTaBa U CIELUAIBHOM TEXHUKH JKEJIE3HBIX J10por. BeinosnHeH
0030p TEOpUil U aHAIU3 COBPEMEHHOIO COCTOSHHS METOJOB TOIMOJIOTHYECKOW ONTUMH3a-
uuu KoHCTpykuuid. [IpuBenensl kilaccuyeckas BapHalMOHHAS M KOHEYHO-IJIEMEHTHAs I10-
CTaHOBKH 3aJ1a4 TOMOJIOTHYECKON ONTUMH3aluu. PaccMOTpeHa mies U 0COOCHHOCTH pea-
m3anuu SIMP-merona ans ux pewmenusi. [lpuBenena nocraHoBKa 3aa4u TOMOJIOTHYECKON
ONTUMH3ALMU B BUJIE MUHUMU3ALMU MacChl KOHCTPYKIHH C Y4ETOM OrpaHUYEHHH 1O Ha-
npsoKeHUsM.  J[eTanbHO PaccMOTpPEH psiji MpoOJieM, BO3HHKAKOMIMX HPH BBEACHHH I000-
HBIX OFpaHMYEHHMH B 3ajauy onTUMU3auuu. HayuHass HOBHU3HA 3aKJIIOYAETCSl B MOCTAHOBKE
3aJa4 TOMNOJOTMYECKOH ONTUMH3ALMU, aJalTUPOBAHHON K PEIICHHIO 3a]auy O MPOEKTHUPO-
BaHUM KOHCTPYKLMU MOJBHIKHOIO COCTaBa M CHELUAIBHON TEXHUKH KEJIE3HBIX JJOPOT.
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