Теорема 2. Пусть a, b, c, d — произвольные точки из G. Произвольная точка $p \in G$, самосовмещается относительно последовательности вершин четырехугольника

тогда и только тогда, когда этот четырехугольник – параллелограмм G.

Список литературы

- 1 **Dörnte, W.** Untersuchungn über einen verallgemeinerten Gruppenbegriff / W. Dörnte // Math. Z. 1928. Bd. 29. S. 1–19.
- 2 Post, E. L. Polyadic groups / E. L. Post // Trans. Amer. Math. Soc. 1940. Vol. 48, no. 2. P. 208-350.
- 3 Prufer, H. Theorie der Abelschen Gruppen I. Grundeigenschaften / H. Prufer // Math. Z. 1924. Bd. 20. S. 165–187.
- 4 **Русаков**, **С. А.** Алгебраические n-арные системы: Силовая теория n-арных групп / С. А. Русаков. М. : Беларуская навука, 1992. 264 с.
- 5 **Кулаженко, Ю. И.** Полиадические операции и их приложения / Ю. И. Кулаженко. М. : Издательский центр БГУ, 2014. 311 с.

УДК 691

ЭФФЕКТИВНОСТЬ ЗАМЕНЫ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ НА ПЛАСТМАССОВЫЕ

Л. С. КУЩЕНКОВА

Нижегородский филиал Самарского государственного университета путей сообщения, Российская Федерация

Замена металла уже на протяжении многих лет остается вопросом, который в центре внимания отрасли по производству пластмассовых материалов. Самые передовые технологии производства пластмасс и их производных широко применяются на железнодорожном транспорте, самолетостроении, автомобильной промышленности и при изготовлении бытовой техники и электроники. Из пластмасс выполнены фюзеляжи самолетов, которые по прочности не уступают металлическим конструкциям; некоторые детали крыльев и хвостового оперения, а также баки и контейнеры для горючего. На пассажирских самолетах, в железнодорожных вагонах пластмассами отделаны помещения, из пластмасс изготовлена мебель.

Исходными материалами для получения пластмасс служат дешевые природные вещества: продукты переработки каменного угля, нефти, природного газа и т. д. На производство пластмасс требуется гораздо меньше капитальных вложений, чем на получение цветных металлов.

В последние годы наблюдается такой быстрый рост производства деталей из пластмасс, какого не знали никакие другие материалы. Этот рост можно объяснить хорошими технологическими и многообразными их полезными свойствами.

Технологические особенности пластмасс:

- отходов при изготовлении пластмассовых деталей примерно в 5 раз меньше, чем при изготовлении металлических, кроме того, они обладают повышенной ремонтопригодностью;
- трудоемкость изготовления пластмассовых деталей высокопроизводительными методами: литьем, прессованием выдавливанием в 7–10 раз ниже, чем обработка металлических деталей;
- ресурсы сырья для изготовления большинства пластмасс считаются практически неограниченными;
 - применение 1 т пластмасс позволяет сэкономить 3–7 т стали или цветных металлов;
- затраты на создание мощностей по производству пластмасс значительно меньше, чем на производство металла, сроки освоения значительно короче.

В вагоностроении применение стеклопластика позволяет снизить вес пассажирского вагона примерно в 2 раза. Цистерны для перевозки жидкого топлива и химикатов, выполненные из стеклопластика, примерно в 3 раза легче стальных. В строительстве наибольшее распространение пластики получили в качестве отделочных материалов. Так, например, декоративными пластиками отделаны станции метрополитенов, кинотеатры и т. д. Кроме того, из пластмассы изготовляют мебель, санитарно-техническое оборудование, арматуру, трубы и редукторы, шестерни и другие детали и изделия, что значительно снижает финансовые затраты.

Полиэтиленовые трубы имеют отличные технико-экономические показатели, непосредственно связанные с низкой себестоимостью эксплуатации, низкими затратами на установку и долгим сроком службы. Они используются при строительстве трубопроводов промышленного и хозяйственнобытового водоснабжения. Высокое качество и экологическая безопасность материала позволяет использовать полиэтиленовые трубы для транспортировки питьевой воды. Трубы обладают следующими преимуществами:

- долговечность (полиэтиленовые трубы прослужат не менее 50 лет, что в несколько раз превышает данные показатель для металлических трубопроводов);
- пониженный уровень затрат, который связан прежде всего с дешевизной полиэтилена как строительного материала, а также с простотой и низкой стоимостью монтажа и перевозки (легкий вес труб позволяет обходиться меньшим количеством транспорта при перевозке, а крепление осуществляется простой сваркой встык, без применения тяжелой техники. При этом образуются надежные соединения, которые не теряют прочности с течением времени и гарантируют полную герметичность трубопровода. Они не допускают утечек или проникновения посторонних веществ внутрь).
- при замерзании и расширении жидкости внутри полиэтиленовой трубы не образуется разрывов. Труба растягивается до нужного размера и вернется затем к первоначальным параметрам.
 - не нуждаются в электродной защите и не подвержены коррозии, ржавчине и окислению.

Последние 20 лет в мире стали периодом интенсивного роста применения пластмасс взамен традиционных материалов (металлов, керамики и т. д.) и реактопластов.

Производство машин не обходится без использования пластмасс и резин. Они являются как заменителями дефицитных цветных металлов, так и материалами с особыми свойствами, для которых не всегда может быть найдена замена. Этим и объясняется широкое использование пластмасс для изготовления огромной номенклатуры деталей машин. Применение пластмасс повышает качество машин и оборудования за счет снижения их массы, улучшает внешний вид, позволяет экономить цветные и черные металлы. Особенно эффективна замена пластмассами цветных металлов (свинца, меди, цинка, латуни, бронзы) и легированных сталей. Пластмассы были внедрены в автомобильную промышленность по ряду причин, среди которых сокращение расходов, снижение веса, объединение компонентов, дизайн, сопротивление коррозии и безопасность. Сегодня автопроизводители по всему миру применяют пластмассы для снижения уровня шума и вибраций, которые были типичны для интерьеров автомобилей. Их действия отражают потребности сегодняшних потребителей, которые хотят видеть вокруг себя приятный и удобный салон. Выполнение из пластмасс или с пластмассовыми покрытиями корпусов центробежных насосов для перекачки агрессивных жидкостей обеспечивает коррозионную стойкость. Основные пластмассы для корпусных деталей: стеклопласты, винипласты, полистирол.

Целесообразность изготовления кожухов и крышек, корпусов переносных машин и приборов из пластмасс определяется удобством эксплуатации и технологическими соображениями (при достаточной серийности выпуска). Для корпусов приборов часто играют также существенную роль электроизоляционные и диамагнитные свойства пластмасс. Выбор материала диктуется технологическими соображениями.

В области звукоизоляции свое применение находят многие полимеры, в том числе полиуретаны, полиамиды, полиэтилен, полипропилен, термопластичные эластомеры и различные конструкционные пластмассы. Изолирование с использованием полимеров, хорошо поглощающих звук, является самой распространенной стратегией автопроизводителей по снижению уровня шума. Тем не менее, существует и другой подход, который заключается в замене металлических деталей менее шумными пластмассовыми аналогами. Иногда эти пластмассовые компоненты дополняются добавками, снижающими уровень трения, которые могут ослабить как шум, так и износ.

Одним из способов снижения уровня шума, вибрации и резкости движений внутри транспортных средств является введение изоляционной пены (обычно это двухсоставное соединение полиуретана) внутрь конструкционных деталей автомобилей. Пенные системы, затвердевающие практически мгновенно, вводятся на сборочной линии внутрь стоек, балок и в другие структурные проемы автомобилей, формируя при этом герметичное акустическое уплотнение. Помимо этого, пена вводится в пространство между пассажирским салоном и двигателем.

Полиуретановая пленка, которая приклеивается к днищу кузова, эффективно заглушает звуки от ходовой части автомобиля. Подложки на основе полиуретана для ковров, дверных прокладок, обшивки потолка салона и приборной панели также являются важными элементами систем подавления звука, используемых в последних моделях автомобилей.

Тем временем расширяется применение микропористых полиуретановых каучуков для снижения уровня вибрации в подвесных системах транспортных средств, в которых они действуют в качестве пружинных опор и изоляторов, противоударных креплений и буферов. Помимо этого, данные материалы применяются в противоударных бамперах, где они ослабляют распространение силы удара и последствия попадания в выбоины на дорогах.

Самосмазывающиеся пластмассовые шестерни ослабляют шум и износ в автомобилях и других механизмах.

Технико-экономическая эффективность применения пластмасс в машиностроении определяется в основном значительным снижением массы машин и повышением их эксплуатационных качеств, а также экономией цветных металлов и сталей. Замена металла пластмассами значительно снижает трудоемкость и себестоимость машиностроительной продукции. При замене черных металлов пластмассами трудоемкость изготовления деталей уменьшается в среднем в 5–6 раз, а себестоимость – в 2–6 раз. При замене пластмассами цветных металлов себестоимость снижается в 4–10 раз.

Оглянувшись кругом, мы заметим массу вещей, изготовленных из пластмасс, которые прочно вошли в наш быт. Большое число деталей холодильников, телевизоров, пылесосов, стиральных машин, спортивные принадлежности, игрушки, посуда, отделочные и упаковочные материалы, различные предметы галантереи, санитарии и гигиены — вот далеко не полный перечень изделий из пластмасс, широко применяемых в быту.

УДК 539.3

ЛОКАЛЬНОЕ НАГРУЖЕНИЕ КРУГОВОЙ СЭНДВИЧ-ПЛАСТИНЫ СТУПЕНЧАТО-ПЕРЕМЕННОЙ ТОЛЩИНЫ

Д. В. ЛЕОНЕНКО, Ю. М. ПЛЕСКАЧЕВСКИЙ Белорусский государственный университет транспорта, г. Гомель

Трехслойные конструкции широко применяются в различных отраслях народного хозяйства. включая транспортное машиностроение и строительство. Достаточно хорошо исследовано статическое и динамическое деформирование гладких круговых трехслойных пластин. Так, в статье [1] рассмотрены свободные колебания, статьи [2, 3] посвящены исследованию локального нагружения трехслойных пластин, в том числе и на упругом основании. Статическое нагружение трехслойного гладкого стержня рассмотрено в [4], ступенчатого при действии температурного нагружения — в [5]. В работе [6] исследована сэндвич-пластина с нерегулярной границей. Здесь рассмотрена подобная пластина под действием локальной нагрузки.

Пластина состоит из трех слоев. Толщины несущих слоев равны между собой $(h_{1l} = h_{2l} = h_l)$ и могут изменяться вдоль радиуса пластины ступенчато. На внешнюю поверхность первого несущего слоя действуют осесимметричные равномерно распределенные локальные нагрузки $q_1(r)$, $q_2(r)$. За искомые величины принимаются прогиб пластины $w_l(r)$ и относительный сдвиг в заполнителе $\psi_l(r)$ на каждом участке l, которые не зависят от окружной координаты φ .

Для аналитической записи локальной распределенной нагрузки используется функция Хевисай-да $H_0(r)$ [7]:

$$H_0(r) = \begin{cases} 1, & r \ge 0, \\ 0, & r < 0. \end{cases}$$