- технические риски отказ устройств СЦБ и связи, отказы устройств расформированияформирования; отказы локомотивов, вагонов;
- технологические риски неготовность маршрутов приема и отправления; занятость путей; отсутствие бригад ПТО, ПКО; несоответствие вагонов и документов;
- человеческие риски ошибки при приготовлении маршрутов, нарушение безопасности движения поездов и техники безопасности; нарушение технологии работы с грузами, вагонами и документами

На каждом шаге событийной цепочки описания бизнес-процесса определяются риски в соответствии с представленной классификацией. Для риска должно быть приведено его описание, определена вероятность возникновения, оценка влияния на бизнес-процесс, методы снижения или устранения риска.

Таким образом, внедрение процессного подхода позволяет повысить управляемость перевозочного процесса за счет единого руководства на всех этапах бизнес-процесса и повысить безопасность перевозок за счет идентификации рисков и методов снижения их влияния.

УДК 656.212.001.2

ТРЕБОВАНИЯ К ПРОЕКТИРОВАНИЮ СТРЕЛОЧНЫХ ГОРЛОВИН УЛУЧШЕННЫХ ЭКСПЛУАТАЦИОННЫХ КАЧЕСТВ

Е. А. ФИЛАТОВ

Белорусский государственный университет транспорта, г. Гомель

Под стрелочной горловиной понимается структурный элемент железнодорожной станции, который обеспечивает технологическую связь отдельных её подсистем и парков путей между собой, а также с примыкающими к ней участками. То есть горловина является важнейшим структурным элементом, обеспечивающим операции по приему, отправлению, пропуску поездов, атакже большинство маневровых передвижений. На схеместрелочная горловинапредставляет собойгруппу стрелочных переводов, соединяющих пути и парки между собой, а также с главными, вытяжным, ходовыми и другими путями.

Исходя из важной роли горловин к ним предъявляются особые эксплуатационные требования по обеспечению безопасности движения поездов и маневровой работы,пропускной способности,компактности размещенияпри обеспечении необходимых технологических связей и минимальномколичестве стрелочных переводов, особенно на главных путях.

Эволюция железнодорожного транспорта сопровождалась концентрацией основных операций на крупных железнодорожных станциях, что приводило к увеличению количества путей в парках таких станций. Этот процесс конечно же сказался и на эволюции стрелочных горловин. Применяемые в их конструкции стрелочные улицы обеспечивали увязку большего количества путей. Для сокращения их длины конструкции стрелочных улиц стали усложняться и прошли путь от простейших, с применением обыкновенных стрелочных переводов, до сокращенных, комбинированных и пучкообразных, с применением симметричных стрелочных переводов марки 1/6. При этом величины применяемых прямых вставок и радиусов кривых также сократились до минимальных величин. Это повысило эффективность использования длины станционной площадки, но привело к увеличению количества кривых в 2–4 раза, в том числез-образных кривых в 5–13 раз.

Одновременно шла модернизация вагонного парка, которая привела к значительному увеличению длины грузовых вагонов. Наложение описанных выше тенденций привело к снижению технической совместимости стрелочных горловин и подвижного состава увеличенных размеров. Диспропорция ограничений параметров стрелочных горловин зафиксирована в нормах проектирования путевого развития и подвижного состава. Поэтому потребовалась разработка специальных требований к проектированию стрелочных горловин, учитывающих особенности взаимодействия подвижного состава и путевого развития при маневровой работе.

Анализ схем стрелочных горловин позволил впервые выделить в отдельную категорию конструкции, образованные сочетанием стрелочных переводов и закрестовинных кривых. Поэтому разработка

требований к проектированию путевого развития, обеспечивающих безопасность и эффективность маневровой работы с расчетными вагонами (таблица 1) выполнялась по трем основным позициям (криволинейные участки пути, стрелочные переводы, схемы взаимного размещения переводов между собой и в паре с кривой), объединяющим 19 конструкций.

Таблица 1 – Требования к проектированию путевого развития железнодорожных станций, обеспечивающих безопасность и эффективность маневров с подвижным составом

	ющих оезо	паснос	гь и эффективность маневров с подв	ижным составом	
No	Описание схемы (действующие ограничения)		Параметры схем путевого развития, обеспечивающие безопасность маневров с вагонами расчетных групп, м		
схемы			массовых (ВМТ)	увеличенных размеров (ВУР)	
1	Криволинейные участки пути				
1.1	Круговые кривые (<i>R</i> = 200; 180 м)		$R_{\min} = 170 \ l_{\text{kp}} > l_{\text{Bar}};$	$R_{\min} = 200;$	
			$l_{\rm kp}^{R180}$ не огран. $(l_{\rm kp}^{R140} < 10,4)$	$l_{\rm kp}^{R180} < 14,1 \ (l_{\rm kp}^{R140} < 9,4)$	
1.2	, , ,		$R_{\min} = 390, l_{\kappa p}$ не огран.;	$R_{\min} = 450, l_{\text{кр}}$ не огран.;	
	S-образные кривые без вставки ($R = 200; 250 м$)		$l_{\text{kp}}^{R200/250/300} = 6.25/7.7/9.5$		
			<u> </u>	$l_{\rm \kappa p}^{R200/250/300} = 6/7, 4/8, 9$	
			$l_{\text{kp}}^{\text{max}} = e^{0.947947 + 0.00435352 \ R}, R \in [140; 385]$	$l_{\text{kp}}^{\text{max}} = e^{1.00537 + 0.00389576 R}$, $R \in [140; 448]$	
	S -образные кривые с прямой вставкой ($R=200~{ m M},d=15~{ m M}$)		$R_{d4,5/6,25/12,5/15} = 345/253/184/171$	$R_{d4,5/6,25/12,5/15} = 408/303/226/207$	
1.3			$d_{R180/200/250} = 13,2/10,6/6,5$	$d_{R180/200/250}$ = не обесп./16,3/10,1	
			$l_{\text{kp}(R200)}^{d.4,5/6,25/1} = 5,3/7,68/\text{не огран.};$	$l_{\text{kp}(R200)}^{d.4,5/6,25/1} = 5/6,84/10,96/14,52;$	
			$l_{\text{kp}(R250)}^{d4,5/6,25/1\ 2,5/15} = 7/11,48$ /не огран.	$l_{\text{kp}(R250)}^{d4,5/6,25/1} = 6,48/9,38/$ не огран.	
2	Расположение стрелочных переводов				
2.1	Одиночный стрелочный перевод (прямой участок, k)		Не ограничивается	Не ограничивается	
2.2			зносторонняя укладка обыкновенных стрел	очных переводов (схема № 1)	
2.2.1	$1/11 \ (d=012,5)$		d не ограничивается	$d_{\min} = 1$	
2.2.2	1/9 (d=012,5)			$d_{\min}=2,7$	
2.3,			попутная разносторонняя укладки обыкнове		
2.4	1/11, 1/9 (d = 012,5)		d не ограничивается	<i>d</i> не ограничивается	
2.5	Схемы укладки № 4 и 5 (модификации)				
2.5.1	$\frac{1/11 \ (d = 4,512,5)}{1/9 \ (d = 4,512,5)}$		d не ограничивается ное расположение симметричных стрелочн	d не ограничивается $d_{\min N_{2}4} = 7,8; d_{\min N_{2}5} = 7,4$	
2.6					
2.6.1	1/6 (d = 5,26)		1	$d_{\min} = 14$	
2.6.2	$1/6 - 1/9 \ (d = 5,26)$		$d_{\min} = 9,5$ $d_{\min}^{P50} = 4; d_{\min}^{P65} = 5,5$	$d_{\min}^{P50} = 9; d_{\min}^{P65} = 10,5$	
2.7	, , ,				
2.7.1			ное расположение симметричных стрелочны		
	$1/6\Pi O\Pi (d = 4,5; 6,25; 7,46)$ 1/6P50 (d = 6,45)		$d_{\min} = 5,1$ $d_{\min} = 7,7$	$d_{\min} = 9,5$ $d_{\min} = 12,1$	
2.7.2	1/6P65 (d = 6,34)				
272	1/9 - 1/6 (P50, $d = 4,5$)		$d_{\min} = 7.8$ $d_{\min} = 5$	$d_{\min} = 12.2$ $d_{\min} = 9.5$	
2.7.3	1/9 - 1/6 (P65, d = 4,5)		$d_{\min} = 6.4$	$d_{\min} = 10.9$	
Схема № 4 (навстречу торцами крестовин)					
2.8	$1/6 - 1/6 \ (d = 4,5)$		d_{\min} = 6,1	$d_{\min} = 10,5$	
3	Взаимное расположение стрелочных переводов и кривых (s-образное расположение)				
3.1	_	1/11	$R_{\min} = 240$	$R_{\min} = 330$	
	Без вставки	1/9	$d_{\min} = 1,3$ при $R = 500$	$d_{\min} = 1,5$ при $R = 1430$	
3.2		1/6	$d_{\min} = 3$ при $R = 530$	$d_{\min} = 3$ при $R = 1330$	
	С прямой вставкой	1/11	$d_{ m P300}$ не огран.	$d_{\rm P300} = 12,42 \ (e_{\rm min} = 4,7)$	
			$R_{\min} = 237,31 - 20,4274\sqrt{d}, d \in [0; 10]$	$R_{\text{min}} = 322,508 - 39,9704\sqrt{d}, d \in [0; 12,7]$	
		1/9	$d_{\rm P200} = 6.71$	$d_{\rm P200} = 12.5 \ (e_{\rm min} = 4.4)$	
			$d_{\rm P300} = 4,48$	$d_{\text{P300}} = 10,12 \ (e = 4,1)$	
			$R_{\text{min}} = 736,841 - 205,626\sqrt{d}, d \in [1,3;7,4]$	$R_{\min} = 2140,63 - 574,356\sqrt{d}, d \in [1,5;11,7]$	
		1/6	$d_{\rm P200} = 8.75 \ (e_{\rm min} = 4.8)$	$d_{\text{P200}} = 13,85 \ (e_{\text{min}} = 5,6)$	
			$d_{\rm P300}$ = 6,55 ($e_{\rm min}$ = 5,1)	$d_{\rm P300} = 11,55 \ (e_{\rm min} = 5,9)$	
			$R_{\text{MT}} = 878,632 - 310,35 \ln d, \ d \in [3; 9,5]$	$R_{\rm yp} = 2237,34 - 780,662 \ln d, \ d \in [3; 13,9]$	
		1			

Анализ параметров горочных горловин станций Белорусской железной дороги на соответствие разработанным требованиям показал, что наибольшая концентрация критических условий взаимодействия на станциях наблюдается в горловинах, запроектированных с применением симметричных стрелочных переводов марки 1/6 (Брест-Восточный, Новополоцк, Барбаров, Гомель, Минск, Витебск и др.). Здесь значительно выше риски нарушения безопасности маневровой работы. При этом отклонения от предлагаемых величин прямых вставок между стрелочными переводами для ВМТ часто не превышают 1–1,5 м, а для ВУР разница составляет более 6 м.

В то же время ряд сортировочных горок(Жлобин, Лида, Волковыск и др.), построенных с применением марок переводов 1/9 и 1/11, практически полностью соответствуют предлагаемымтребованиям (до 90 % путей обеспечивают безопасность маневров с ВМТ и ВУР).

Полученные ограничения снижают неопределенность при проектировании железнодорожных станций в части применения трудных и особо трудных условий проектирования, а такжепозволяют повысить безопасность и качество эксплуатационной работы за счет гарантированного обеспечения технической совместимости схем путевого развития и подвижного состава. Устраняется риск несцепления подвижного состава при маневрах, ликвидируются непредвиденные задержки в работе, облегчается труд причастных работников, снижается износ элементов подвижного состава и путевого развития, уменьшается шумовое воздействие в зоне маневров.

УДК 05.22.08

АВТОМАТИЗАЦИЯ И ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ В СИСТЕМЕ ОРГАНИЗАЦИИ ДВИЖЕНИЯ ПОЕЗДОВ

А. В. ФИЛИПКОВА

Белорусский государственный университет транспорта, г. Гомель

На сегодняшний день в ОАО «РЖД» наблюдаются затруднения, связанные с невозможностью организации ритмичного и стабильного продвижения вагонопотока. Данные затруднения негативно сказываются как на социальных, так и на экономических аспектах деятельности ОАО «РЖД» как гаранта транспортной и экономической безопасности Российской Федерации, в том числе на мировой арене.

Можно выделить две основные проблемы в организации и управлении вагонопотоком.

Организационный уровень — отсутствие адаптивного плана формирования. Эффективность и качество работы ОАО «РЖД», в частности Дирекции управления движением, традиционно оценивается по выполнению эксплуатационных показателей, а также плана формирования поездов. Принято считать, что выполнение графика движения и плана формирования поездов — есть получение максимальной прибыли ОАО «РЖД». На сегодняшний день план формирования поездов рассчитывается на основании единственного критерия эффективности — минимального количества вагоночасов накопления и переработки. Его стоимость определяется по формуле

$$C = \sum_{i,j=1}^{N} \{ [cm]_{ij} + T_{ij}^{\mathfrak{I}K} \},$$

где N_{ij} — вагонопоток; i — номер станции зарождения потока; j — номер станции погашения потока; c — параметр накопления; m — состав поезда; $T_{\rm 3K}$ — экономия от проследования через станцию i без переработки.

Изложенная задача в математическом плане представляет собой однокритериальную задачу линейного программирования. Однако с существующим критерием оптимизации непосредственно связана небольшая доля всех эксплуатационных расходов и затрат на основные производственные фонды [4]. Кроме того, система технического нормирования существенно отстала от реалий сегодняшнего дня. В современных условиях приоритетами являются такие показатели, как сокращение сроков доставки грузов, обеспечение качества перевозочных услуг и снижение их себестоимости — так называемая клиентоориентированность, которая в совершенно другом ключе должна учитываться при расчете плана формирования поездов.