- 2 **Старовойтов, Э. И.** Трехслойные стержни в терморадиационных полях / Э. И. Старовойтов, М. А. Журавков, Д. В. Леоненко. Минск : Беларуская навука, 2017. 275 с.
- 3 **Старовойтов, Э. И.** Вязкоупругопластические слоистые пластины и оболочки / Э. И. Старовойтов. Гомель : БелГУТ, 2002. 344 с.
- 4 **Белл, Дж. Ф.** Экспериментальные основы механики деформируемых тел: в 2 ч. / Дж. Ф. Белл. М.: Наука, 1984. 1027 с.

УДК 539.3

НЕОСЕСИММЕТРИЧНОЕ ДЕФОРМИРОВАНИЕ ТРЕХСЛОЙНОЙ ПЛАСТИНЫ СО СВОБОДНО ОПЕРТЫМ КОНТУРОМ

А. В. НЕСТЕРОВИЧ

Белорусский государственный университет транспорта, г. Гомель

Рассматривается неосесимметричное изотермическое деформирование трехслойной круговой пластины в своей плоскости с шарнирно закрепленным центром и свободно опертым на жесткие опоры контуром, для которой принимаются кинематические гипотезы ломаной линии. Постановка задачи и ее решение проводятся в цилиндрической системе координат r, ϕ , z, связанной со срединной плоскостью заполнителя, к которой приложена непрерывно распределенная нагрузка, проекции которой на радиальную и тангенциальную оси координат: $p_r(r, \phi)$, $p_{\phi}(r, \phi)$.

Возникающие перемещения $u_r(r, \varphi)$, $u_{\varphi}(r, \varphi)$ удовлетворяют системе обыкновенных дифференциальных уравнений:

$$\begin{split} & L_{2}\left(u_{r}\right) + \frac{a_{3}}{a_{1}r^{2}}u_{r},_{\varphi\varphi} + \frac{a_{2} + a_{3}}{a_{1}r}u_{\varphi},_{\varphi r} - \frac{a_{1} + a_{3}}{a_{1}r^{2}}u_{\varphi},_{\varphi} = -\frac{p_{r}}{a_{1}};\\ & L_{2}\left(u_{\varphi}\right) + \frac{a_{2} + a_{3}}{a_{3}r}u_{r},_{r\varphi} + \frac{a_{1}}{a_{3}r^{2}}u_{\varphi},_{\varphi\varphi} + \frac{a_{1} + a_{3}}{a_{3}r^{2}}u_{r},_{\varphi} = -\frac{p_{\varphi}}{a_{3}}, \end{split} \tag{1}$$

где L_2 — дифференциальный оператор Бесселя; a_1 , a_2 , a_3 — коэффициенты, зависящие от температуры и определяемые через геометрические и упругие характеристики материалов слоев; запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате.

Для решения системы уравнений (1) искомые перемещения $u_r(r, \varphi)$, $u_{\varphi}(r, \varphi)$ и нагрузки $p_r(r, \varphi)$, $p_{\varphi}(r, \varphi)$ раскладываются в тригонометрические ряды Фурье:

$$u_r\left(r,\varphi\right) = u_{r0}\left(r\right) + \sum_{n=1}^{\infty} \left[u_m^{(1)}\left(r\right) \cos\left(n\varphi\right) + u_m^{(2)}\left(r\right) \sin\left(n\varphi\right) \right],$$

$$u_{\varphi}(r,\varphi) = u_{\varphi_{0}}(r) + \sum_{n=1}^{\infty} \left[u_{\varphi_{n}}^{(1)}(r) \cos(n\varphi) + u_{\varphi_{n}}^{(2)}(r) \sin(n\varphi) \right],$$

$$p_{r}(r,\varphi) = p_{r_{0}}(r) + \sum_{n=1}^{\infty} \left[p_{r_{0}}^{(1)}(r) \cos(n\varphi) + p_{r_{0}}^{(2)}(r) \sin(n\varphi) \right],$$

$$p_{\varphi}(r,\varphi) = p_{\varphi_{0}}(r) + \sum_{n=1}^{\infty} \left[p_{\varphi_{n}}^{(1)}(r) \cos(n\varphi) + p_{\varphi_{n}}^{(2)}(r) \sin(n\varphi) \right],$$
(2)

где $u_{r0}\left(r\right)$, $u_{\phi0}\left(r\right)$ — перемещения, соответствующие осесимметричному нагружению; $u_m^{(1)}\left(r\right)$, $u_m^{(2)}\left(r\right)$, $u_{\phi n}^{(1)}\left(r\right)$, $u_{\phi n}^{(2)}\left(r\right)$ — искомые амплитудные функции неосесимметричных составляющих перемещений; $p_{r0}\left(r\right)$, $p_{\phi0}\left(r\right)$ — осесимметричные составляющие нагрузки, $p_m^{(1)}\left(r\right)$, $p_m^{(2)}\left(r\right)$, $p_{\phi n}^{(1)}\left(r\right)$, $p_{\phi n}^{(1)}\left(r\right)$, асимметричные составляющие радиальной и тангенциальной внешних нагрузок.

Примем, что на пластину действует косинусоидальная нагрузка с постоянной амплитудой $p_{r1} = \mathrm{const}$:

$$p_r(r,\varphi) = p_{r_1}\cos\varphi \,, \quad p_{\varphi} = 0 \,. \tag{3}$$

Коэффициенты разложения нагрузки (3) в ряды (2) примут вид

$$p_m^{(1)}\left(r\right) = \frac{p_{r1}}{\pi} \int_0^{2\pi} \cos\varphi \cos\left(n\varphi\right) d\varphi = \begin{cases} 0, & n \neq 1 \\ p_{r1}, & n = 1 \end{cases},$$

таким образом

$$p_{r1}^{(1)}(r) = p_{r1}, \quad p_m^{(1)}(r) = 0 \quad \text{при } n > 1, \quad p_m^{(2)}(r) = p_{\phi n}^{(1)}(r) = p_{\phi n}^{(2)}(r) = 0.$$

После подстановки выражений (2) в систему уравнений (1) и с учетом независимости принятых систем тригонометрических функций для выполнения уравнений при любых значениях аргумента φ суммарные коэффициенты при одинаковых гармониках должны обращаться в ноль. Удовлетворяя этому требованию, получим систему из четырех обыкновенных линейных дифференциальных уравнений для определения искомых амплитудных функций $u_m^{(1)}(r)$, $u_m^{(2)}(r)$, $u_{\varphi n}^{(1)}(r)$, $u_{\varphi n}^{(2)}(r)$. Данная система при n > 1 будет однородной, с принятыми нулевыми граничными условиями, дающей тривиальные решения. Если n = 1, то получаем

$$\begin{split} \mathbf{L}_{2}\left(u_{r1}^{(1)}\left(r\right)\right) - \frac{a_{3}}{a_{1}r^{2}}u_{r1}^{(1)}\left(r\right) + \frac{a_{2} + a_{3}}{a_{1}r}u_{\varphi 1}^{(2)},_{r}\left(r\right) - \frac{a_{1} + a_{3}}{a_{1}r^{2}}u_{\varphi 1}^{(2)}\left(r\right) = -\frac{1}{a_{1}}p_{r1},\\ \mathbf{L}_{2}\left(u_{\varphi 1}^{(2)}\left(r\right)\right) - \frac{a_{1}}{a_{3}r^{2}}u_{\varphi 1}^{(2)}\left(r\right) - \frac{a_{2} + a_{3}}{a_{3}r}u_{r1}^{(1)},_{r}\left(r\right) - \frac{a_{1} + a_{3}}{a_{3}r^{2}}u_{r1}^{(1)}\left(r\right) = 0, \end{split}$$

$$\begin{split} & L_{2}\left(u_{r1}^{(2)}\left(r\right)\right) - \frac{a_{3}}{a_{1}r^{2}}u_{r1}^{(2)}\left(r\right) - \frac{a_{2} + a_{3}}{a_{1}r}u_{\varphi 1}^{(1)},_{r}\left(r\right) + \frac{a_{1} + a_{3}}{a_{1}r^{2}}u_{\varphi 1}^{(1)}\left(r\right) = 0,\\ & L_{2}\left(u_{\varphi 1}^{(1)}\left(r\right)\right) - \frac{a_{1}}{a_{3}r^{2}}u_{\varphi 1}^{(1)}\left(r\right) + \frac{a_{2} + a_{3}}{a_{3}r}u_{r1}^{(2)},_{r}\left(r\right) + \frac{a_{1} + a_{3}}{a_{3}r^{2}}u_{r1}^{(2)}\left(r\right) = 0. \end{split} \tag{4}$$

Третье и четвертое уравнения в (4) образуют однородную систему, которая при нулевых граничных условиях также дает тривиальное решение

$$u_{r1}^{(2)} \equiv u_{o1}^{(1)} \equiv 0$$
.

Первое и второе уравнения в (4) образуют неоднородную систему, решение которой при нулевых граничных условиях и учете ограниченности перемещений в центре пластины будет

$$\begin{split} u_{r1}^{(1)} &= -C_1 + C_4 \, \frac{a_1 - 3a_2}{5a_1 + a_2} \, r^2 \, - \\ &- \Big[\Big(51a_1^2 + 14a_1a_2 + 11a_2^2 \Big) + 4 \Big(a_1 - 3a_2 \Big) \Big(5a_1 + a_2 \Big) \ln r \Big] \frac{p_{r1}r^2}{64a_1 \left(a_1 - a_2 \right) \left(5a_1 + a_2 \right)} \, , \\ u_{\varphi_1}^{(2)} &= C_1 + C_4 r^2 + \frac{5a_1 + a_2}{64a_1 \left(a_1 - a_2 \right)} \Big(5 - 4 \ln r \Big) \, p_{r1} r^2 \, . \end{split}$$

Оставшиеся константы интегрирования C_1 и C_4 следуют из граничных условий:

$$u_r = 0 \quad \text{при} \ r = 0,$$

$$T_{r\phi}\big|_{r=r_0} = \frac{a_3}{r} \Big(u_r,_{\phi} + ru_{\phi},_r - u_{\phi}\Big) = 0 \quad \text{при} \ r = r_0 \ .$$

Отсюда получим:

$$C_{11} = 0$$
, $C_4 = \frac{1}{16a_1(a_1 - a_2)} \left[-\frac{19a_1^2 + 6a_1a_2 + 3a_2^2}{4(a_1 + a_2)} + (5a_1 + a_2) \ln r_0 \right] p_{r1}$.

Окончательный вид перемещений будет

$$u_{r} = \frac{1}{a_{1} + a_{2}} \left(\left(\frac{2a_{1} + a_{2}}{3a_{1}} r_{0} - \frac{a_{1} + a_{2}}{3a_{1}} r \right) p_{r0} + 3 \sum_{k=1}^{3} \alpha_{0}^{(k)} K_{k} \Delta T h_{k} \right) r - \frac{1}{32a_{1} \left(a_{1} - a_{2} \right)} \left[\frac{7a_{1}^{2} + a_{2}^{2}}{a_{1} + a_{2}} - 2\left(a_{1} - 3a_{2} \right) \ln \left(\frac{r_{0}}{r} \right) \right] p_{r1} r^{2} \cos \varphi ,$$

$$u_{\varphi} = \frac{1}{16a_{1} \left(a_{1} - a_{2} \right)} \left[\frac{2\left(3a_{1}^{2} + 12a_{1}a_{2} + a_{2}^{2} \right)}{a_{1} + a_{2}} + \left(5a_{1} + a_{2} \right) \ln \left(\frac{r_{0}}{r} \right) \right] p_{r1} r^{2} \sin \varphi . \quad (5)$$

Предложенные перемещения (5) позволяют исследовать напряженнодеформированное состояние круговой трехслойной пластины при неосесимметричных нагрузках, действующих в ее плоскости при свободном контуре.

Работа выполнена при финансовой поддержке Белорусского Республиканского фонда фундаментальных исследований (проект № Т19РМ-089).

УДК 624.131

ДИНАМИЧЕСКОЕ ДОГРУЖЕНИЕ БАЛКИ ВСЛЕДСТВИИ ВНЕЗАПНОГО ИЗМЕНЕНИЯ СТРУКТУРЫ УПРУГОГО ОСНОВАНИЯ

А. А. ПОДДУБНЫЙ

Белорусский государственный университет транспорта, г. Гомель

В. А. ГОРДОН

Орловский государственный университет им. И. С. Тургенева, Российская Федерация

Простейшей и широко применяемой в различных расчетах моделью взаимодействия нагруженной деформируемой системы, опирающейся на упругое основание, является модель Винклера.

Основание Винклера рассматривается как множество независимых пружин, работающих на растяжение-сжатие, закрепленных на абсолютно жестком континууме. Недостаток пружинной (клавишной) модели Винклера состоит в том, что при сопротивлении нагрузкам в некоторой точке основания, в работу не вовлекаются соседние точки (пружины). Такая система справедлива лишь для оснований со слабой распределительной способностью (мягкие, рыхлые грунты и т. д.). Этот недостаток решается с помощью модели Пастернака (двухпараметрическое основание). Второй параметр (к2), вводимый дополнительно к параметру Винклера (к1), учитывает сдвиговые реакции основания.

На рисунке 1 приведены примеры оснований, которые могут работать как модель Винклера и Пастернака. При этом возможны такие примеры практических задач, когда конструкция может опираться на связные грунты (пример оснований модели Пастернака) и в случае внезапного изменения физико-механических свойств оснований грунты могут стать не связными (пример оснований модели Винклера).

В работе рассматривается задача по построению математической модели динамического процесса, возникающего в несущей статическую нагрузку балке, опирающейся на двухпараметрическое основание Пастернака при вне-