РАЗРАБОТКА МЕТОДИКИ МАГНИТОПОРОШКОВОГО КОНТРОЛЯ АДАПТЕРОВ ГРУЗОВОГО ВАГОНА

А. Г. ОТТОКА, Е. В. САМУСЕНКО Гомельское вагонное депо, Белорусская железная дорога

О. В. ХОЛОДИЛОВ

Белорусский государственный университет транспорта, г. Гомель

Неразрушающий контроль литых деталей тележек грузовых вагонов является частью технологий деповского и капитального видов ремонта вагонов и предназначен для своевременного выявления дефектов, указанных в нормативной и/или конструкторской (ремонтной, эксплуатационной) документации, принятия необходимых мер по обеспечению технической и экологической безопасности транспорта.

В настоящее время проверка адаптеров (полубукс) (рисунок 1)методами НК не проводится ни на Белорусской железной дороге, ни на заводе-изготовителе.

Задачами входного контроля являются:

- обеспечение поступления в организации Белорусской железной дороги качественных изделий, соответствующих установленным требованиям;
 - получение объективной и достаточной информации о качестве поставляемых изделий;
 - накопление статистических данных о фактическом уровне качества получаемых изделий. Дефектация адаптеров проводится по ГОСТ 34385-2018 как требования к отливкам [1].

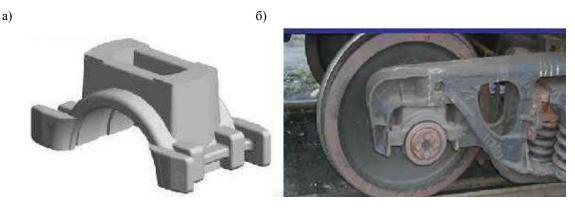
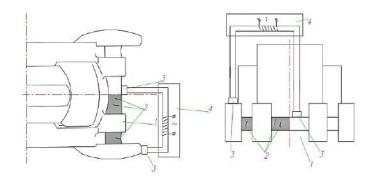


Рисунок 1 – Конструктивное исполнение адаптера (a) и его расположение в колесной паре (δ)

Объем контроля, а также виды недопустимых дефектов и их размеры устанавливают в НТД отрасли или предприятия на контроль объектов [2].


Анализ существующих методов НК показал, что для проверки адаптеров наиболее подходящим с точки зрения чувствительности и информативности является магнитопорошковый метод.

Исходя из магнитных характеристик материала адаптера, было выбрано полюсное намагничивание с помощью электромагнита переменного тока (рисунок 2).

Рисунок 2 —Полюсное намагничивание с использованием электромагнита переменного тока:

1 — объект контроля: 2 — трешины в зоне контро

1 – объект контроля;
 2 – трещины в зоне контроля;
 3 – подвижные полюсы;
 4 – электромагнит (серым цветом показаны зоны контроля)

В таблице 1 приведены некоторые характеристики технологического процесса контроля.

Таблица 1 – Характеристики технологического процесса МПК адаптеров

Способ контроля, H_t на поверхности детали, A/cm , не менее	Вид намагничивания	Ширина раскрытия дефектов, мкм	Направление дефектов (ориентация)
СПП, 20	Полюсное намагничивание с использованием электромагнита переменного тока	≥ 30	Поперечное

Порядок проведения МПК адаптера включает в себя следующие этапы.

- 1 Подготовка адаптера к контролю:
 - проверка работоспособности средств МПК;
 - проверка контролепригодности адаптера.

Проверка контролепригодности детали заключается в визуальном осмотре ее поверхности в зонах обязательного НК на отсутствие видимых поверхностных дефектов, загрязнений, краски и других покрытий, мешающих проведению контроля.

Для проверки работоспособности используют настроечный образец с естественным и искусственным дефектами (рисунок 3).

Рисунок 3 – Зона контроля адаптера с естественным (1) и искусственным (2) дефектами

2 Намагничивание изделия.

Для намагничивания используют намагничивающее устройство МЭД-40. Контроль напряженности магнитного поля намагничивания осуществляют с помощью измерителя напряженности магнитного поля ИМАГ-400Ц.

3 Нанесение на поверхность изделия магнитного индикатора в процессе намагничивания и выявление дефектов (рисунок 4).

Для выявления дефектов используют сухой концентрат флюоресцентной суспензии КСФ-12.

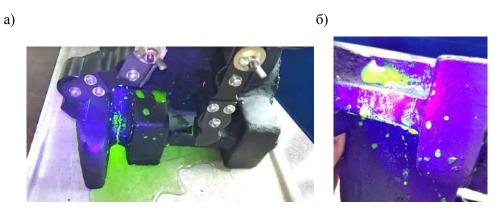


Рисунок 3 – Пример выявления искусственного (a) и эксплуатационного (б) дефектов

4 Выявление индикаторных рисунков при контроле в соответствии с общими ведомственными методиками с помощью УФ-фонаря, излучающего на длине волны 395—400 нм. При выполнении осмотра контролируемой поверхности в УФ-излучении используют защитные очки с желтым фильтром.

Для того чтобы удостоверится в отсутствии необходимости размагничивания детали, используем измеритель магнитного поля ИМП-6.

5 Удаление индикаторных средств.

Предложенная методика показала свою эффективность и может быть использована в практике ремонтного производства вагонных депо Белорусской железной дороги

Список литературы

 $1\ \Gamma$ ОСТ 34385-2018 Буксы и адаптеры для колесных пар тележек грузовых вагонов. Общие технические условия. Введ. 2015-06-07.-M.: Стандартинформ, $2018.-20\ c.$

2 ГОСТ 56512-2015 Контроль неразрушающий. Магнитопорошковый метод. Типовые технологические процессы. Введ. 2018-12-01.-M.: Изд-во стандартов, <math>2015.-60 c.