О МАТЕМАТИЧЕСКОМ ОБРАЗОВАТЕЛЬНОМ КОНТЕНТЕ В ЭЛЕМЕНТАХ LMS MOODLE

Ю.М. ГРЕБЕНЦОВ, Г.М. ГРЕБЕНЦОВА, В.В. СТАСИНА УО «Могилёвский государственный университет продовольствия», Республика Беларусь

На сегодняшний день многие преподаватели учреждений высшего образования в своей педагогической практике используют элементы дистанционного образования (online-тестирование, размещение конспектов лекций на сайтах университетов, общение со студентами посредством электронной почты или разнообразных мессенджеров и др.) для повышения качества образовательного процесса.

Для успешного и эффективного внедрения в образовательный процесс элементов дистанционного обучения, а также организации самого дистанционного обучения многими учреждениями высшего образования используются различные виртуальные образовательные платформы (Moodle, Sakai, Whiteboard, BBC Teaching English, TEFL sites, Web English Teacher и т.д.). В УО «Могилёвский государственный университет продовольствия» используется модульная объектно-ориентированная динамическая обучающая среда (LMS Moodle), на основе которой организован студенческий образовательный портал. Преимущества данной образовательной среды были рассмотрены нами в [1].

Рассмотрим некоторые моменты, относящиеся к наполнению контентом образовательного портала. С размещением текстового контента у большинства пользователей трудностей, как правило, не возникает, а вот размещение контента, содержащего математические формулы и выражения вызывает у многих преподавателей вопросы. Эти вопросы чаще всего возникают при размещении на образовательном портале лекций, практических занятий, тестов, расчётнографических работ и т.д. по дисциплинам естественнонаучного профиля (высшая математика, физика, химия, прикладная механика и др.).

Рассмотрим различные варианты наполнения формулами элементов курса LMS Moodle.

Первый вариант. Вставка формул в элементы курса в виде изображения. Для реализации данного варианта пользователю необходимо предварительно преобразовать формулу в картинку (форматы JPEG, GIF, PNG и др.). Для того чтобы это реализовать, можно, например, набрать все необходимые формулы в документе Word, а потом сохранить его в виде веб-страницы. В результате данного действия создаётся одноимённая папка *.files, куда попадают все формулы, преобразованные в формат GIF. После преобразования формул полученные файлы необходимо загрузить на сервер и только после этого воспользоваться кнопкой «Изображение» во встроенном редакторе системы LMS Moodle для вставки в элемент курса. Вид формулы, вставленной таким образом, показан на рисунке 1.

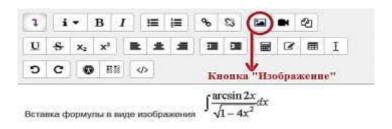


Рисунок 1 — Вид формулы, вставленной как изображение, в элементе курса LMS Moodle

Второй вариант. Если пользователь знаком с языком программирования ТеХ (система компьютерной вёрстки, разработанная американским профессором информатики Дональдом Кнутом в целях создания компьютерной типографии), то набор формул может быть осуществлён непосредственно во встроенном редакторе системы LMS Moodle. Преимуществом данного способа является то, что пользователю нет необходимости устанавливать и использовать сторонние программные продукты. Однако стоим отметить, что подавляющее большинство пользователей не знакомо с синтаксисом языка программирования ТеХ. То есть преподаватель понесёт существенные временные затраты на изучение языка, прежде чем приступит к наполнению своего курса контентом, что является существенным недостатком этого способа. Для убедительности приведём лишь малую часть команд языка ТеХ (рисунок 2).

N.	Morall	3	Vexista	00	\infty	10	\mapsto	o	\alpha	3	\beta	2	\gamma	1	\delta
€	Ain:	3	And	. 0	\emptyset	X	Ameterinos		C. C			12		7.15	10000000
C	\aubaet.	2	Lespoot	<	\ncbested	3	Apparted	. 6	'epsilon	ε	\warepsilon	6	zeta	ŋ	\eta
3	\leq	>	\geq.	in	\equiv	7	\meq	0	\theta	Ü	\wartheta	4	\iota	N	\kappa
	\cdot	121	Vapprox	194	\min	26	\cong	A	\lanbda	π	Tunta.	w	\nu	8	\xi
4	111	3	\gg	28	\mid	79	lneg	7	\ni	W	\warpi	0	\rbo	0	\varrho
M	\vee	1	wedge.	1	\logil	1	\regil -	(1)	3073000	70	THE RESERVE OF THE PARTY.	2		- 50	
1	\perp	1	\parallel	O.L	Vangle	Δ	\triangle		\sigma	5	\varsigma	2	\tan	41	\upeilon
1	\lifloor	- î	Artloor	0	\partial	V	\nabla	4	\phi.	獎	\warphi	X	\chi	ψ.	\psi
4	\pm	+	\mp	4	1017	×	\times	W	\omega	Г	\Gamma	Δ	\Delta	0	\Theta
(0)	\oplus	0	\dained	.03	\otimes	10	\oslash	Λ	\Lambda	3	\Xi	П	\Pi	Σ	\Sigma
0	\odot	n	\cap	U	Vent	0	\circ	Υ	\Upsilon	Φ.	\Fhi	$\boldsymbol{\Phi}$	\Pui	Ω	\Omega

Рисунок 2 – Символы и греческие буквы на языке ТеХ

Наконец, рассмотрим **третий вариант.** Подготовка математического контента в этом варианте основывается на использовании встраиваемого в MS Word математического редактора MathТуре (версий 6.9 и выше). После набора в документе Word текста, содержащего формулы, необходимо выделить весь текст (Ctrl+A), перейти на вкладку «MathТуре» и выбрать «Convert Equations». В открывшемся окне переставить радиокнопку напротив «Text using MathТуре translator», из выпадающего списка выбрать «Moodle:TeX filter» и нажать кнопку «Convert». После проведённых действий все формулы, которые содержатся в документе, будут представлены на языке ТеХ (рисунки 3, 4). Далее документ с помощью конвертеров (находятся в свободном доступе в сети Internet) сохраняется в любом из форматов, подходящих для импорта в LMS Moodle (GIFT, Moodle XML, WebCT и др.) и размещается в элементе курса.

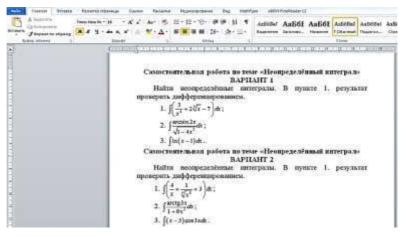


Рисунок 3 – Вид документа Word до преобразования формул

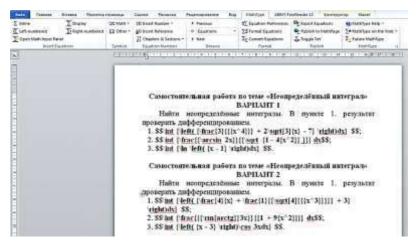


Рисунок 4 – Вид документа Word после преобразования формул

На наш взгляд, именно третий вариант представляется наиболее подходящим для создания курсов по дисциплинам естественнонаучного профиля, так как не требует каких-либо специфических знаний, например, синтаксиса языка программирования TeX; обладает самым простым, из рассмотренных, алгоритмом действий пользователя; экономит время, необходимое для подготовки математических формул и выражений для размещения их в элементы курса LMS Moodle (процедура конвертации всех формул в документе занимает меньше минуты).

Однако каждый из пользователей волен выбирать наиболее подходящий для него вариант.

В заключение отметим, что результаты данной работы широко используются преподавателями нашего университета при создании электронных учебно-методических комплексов по различным дисциплинам на основе LMS Moodle и при размещении математического контента в элементах курсов LMS Moodle.

Список литературы

1 **Гребенцов, Ю.М.** Опыт использования динамической обучающей среды Moodle в преподавании высшей математики студентам заочной формы получения образования / Ю.М. Гребенцов, А.М. Гальмак, И.В. Юрченко // Качество подготовки специалистов в техническом университете: проблемы, перспективы, инновационные подходы: материалы IV Междунар. науч.-метод. конф., Могилёв, 15−16 ноября 2018 г./ МГУП; ред.: А.С. Носиков [и др.]. – Могилёв, 2018. – С. 128−129.