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PARAMETRIC INSTABILITY OF FERROFLUID LAYER
FREE SURFACE IN OSCILLATING MAGNETIC FIELDS

The stability problem is investigated for ferrofluid layer of finite depth and random vis-
cosity in magnetic field consisting of constant and oscillating parts. Using Floquet theory
the problem is transformed to the equation for quadratic matrix pencil, determined by am-
plitude of parametric actions. Neutral stability curves for vertical and horizontal magnetic
fields are determined and the difference between these excitation mechanisms of parametric
instability is analyzed.

Introduction. The stability problem of fluid free surface in alternating fields is
of interest due to prevalence of different parametric actions in technique, f. e. me-
chanical vibration, temperature fluctuation, sound and electromagnetic fields, etc.
Faraday was the first who studied appearance of standing waves on the free sur-
face of fluid layer, subjected to mechanical vibration [1]. As a result of experi-
ments with fluids of different viscosities he found the excitation of parametric
resonance on the frequency, equal to half of the principal frequency (subharmonic
oscillations) or the same frequency (harmonic oscillations). In [2] it was proposed
a method based on the Floquet theory allowing to reduce the given problem to
eigenvalue problem for matrices of infinite order and to determine neutral stability
curves. The instability of ferrofluid free surface in pure oscillating magnetic field
was studied in [3]. The critical value of main amplitudes for cases of vertical, ho-
rizontal and rotating of magnetic fields in vertical plane was determined. The con-
stant vertical magnetic field causes the emergence of regularized spatial structures
on the ferrofluid free surface when the field magnitude exceeds critical value [4]
(Rosensweig instability). The stability of ferrofluid free surface at mechanical
vibration and in constant magnetic fields was studied in [5, 6]. The first time of
adding the constant part to oscillating magnetic field is described in [7], but the
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difference from Faraday problem has not been shown, that’s why this problem is
being still investigated [8]. The presented paper continues research, started in [9],
where the stability of unbounded ferrofluid layer in oscillating fields of various
natures was studied. z.
Problem formulation. A horizon-
tally unbounded ferrofluid layer, sur-
rounded by air at the top and limited by
nonmagnetic solid plate at the bottom,
is considered (see Figure 1). Q with
indexes 1, 2, 3 denotes region, occupied
by fluid, air and solid plate respectively.
It is assumed that ferrofluid layer
free surface, which is defined as

Figure 1 — A sketch of the problem

z = ¢(t, x), is under parametric action of magnetic field of H(@) strength, ¢ is a

perturbation of the free magnetic fluid surface. Magnetizable fluid is considered to
be viscous, non-conductive, homogeneous, incompressible and under the most
general isotropic magnetization law (L, = W(p, 7, H), W, =13 = 1).

Here and further the following notations are introduced: ¥ is a perturbation of
the flow function, @ is a perturbation of the magnetic field strength potential

(I:I :VCID) , v and m are kinematic and dynamic viscosities, p is a density, [ is
magnetic permeability, ¢ is a coefficient of surface tension, k£ is a wavenumber,
H,= (I:I . k) / k 1is a horizontal component of the magnetic field strength, M is a
magnetization, T is a temperature, c, is a heat capacity, <> is a jump of corre-

sponding values, 4 is a thickness of the fluid layer.
In the linear approximation fluid motion near equilibrium state is described by
the following system of equations [2, 7, 9]:
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Boundary conditions for the free surface (at z = 0):
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Boundary conditions at infinity (|z| —> o0 ):
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Formulated in (1) — (10) problem allows to study the instability of free surface
for ferrofluid with non-linear magnetization law, taking into account the effects of
viscous dissipation and the final depth of the fluid layer.

Analytical solution. Solution of the problem (1)—(10) can be written in the form:

W(t,x,2) = W(t, 2)e'™, d(t, x, 2) = (t, 2)™ ¢(t,x) = E@t)e'™.

The main qualitative characteristics of these solutions are studying for the lin-
ear magnetization law: L = const, i.e. ¢, =0.

The problem for magnetic field (2), (3) is solved with corresponding boundary
conditions (5), (6), (9), (10) and the result is substituted to (7):
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where functions H,(f) and H,(f) are assumed to be periodic. Using the Floquet the-

ory the hydrodynamic problem (1) is solved with boundary conditions (4), (8) and
the result is substituted to (11). Than we get:
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Vertical and horizontal components of magnetic field strength are set in the
following form:
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H_(1)=H,, +m,cos(n,ot), H (t)=Hy, +m, cos(n,or), (13)

where m and o are the amplitude and the frequency of magnetic field strength
relatively.
Expressions (13) are substituted to (12) and a recurrence relation is obtained:
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Expression (14) describes general case, when vertical and horizontal parts of
magnetic field oscillate with different amplitudes and frequencies. Let’s consider
particular cases of either vertical or horizontal magnetic fields.
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Results and discussions. Magnetic field consisting of constant and oscillating
parts (13), leads to a two-frequency parametric action [8, 9], in contrast to the case
of mechanical vibration. That’s why for vertical or horizontal magnetic field from
(14) follows eigenvalue problem for quadratic matrix pencil:

(mfcf+mj3f+Af)§=0, j=zx. (16)

where A%, A" are diagonal matrices with elements (15) at Hy =0, Hy,=0
respectively. B, B* and C°, C' are symmetric two- and tridiagonal matrices
with elements:
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The problem (16) can be reduced to linear eigenvalue problem using vector
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where [ is identity matrix of the same size as A,B and C. The amplitude of
vertical or horizontal field is eigenvalue of the problem (17).

Neutral stability curves are determined in (k, m) by solving eigenvalue prob-
lem (18). Matrices A,B and C are cut to size, providing the required accuracy of
calculations. The Floquet exponent y = s + ia is fixed on values s =0 and a =0
(o= 1/2), corresponding to harmonic (subharmonic) oscillations [2]. For calcula-
tions there were used typical for ferrofluid parameters [3]: v=0,1 P, u=>5,
6=30erg/em’, p=1g/em’, h=1cm, ®= 100 Hz.

Neutral stability curves for pure oscillating vertical magnetic field are shown
on Figure 2, a. Here (k, m,) plane is divided into zones (“tongues”), outside (in-
side). Their parameter values correspond to case of stability (instability). The ab-
solute minimum of neutral curves determined the critical amplitude and wave-
number at which instability occurs.
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Figure 2 — Neutral stability curves for vertical oscillating magnetic field:
a)Hopz=0, b) Hyoz =20 Oe, c) Hoz =90 Oe, d) Hoz = 100 Oe

For pure oscillating vertical magnetic field only harmonic instability tongues,
formed by neutral stability curves, are the most dangerous. Adding the constant
part to vertical oscillating field leads to appearance of bounded regions of subhar-
monic instability (zones filled in gray). When H,, increases the subharmonic os-
cillations become more dangerous (see Figure 2, b). When H,, exceeds critical
Rosensweig field Hp, there is an additional (shaded) instability region (see Figure
2, ¢ and d). In [10] there were experimentally shown, that by adding of oscillating
part to constant vertical magnetic field it can lead to Rosensweig instability thre-
shold decrease. But Figure 2, ¢) shows the gap between instability tongues, i.e.
Rosensweig instability threshold also can be shifted forward due to parametric
action of oscillating magnetic field, similarly to the case of mechanical vibrations
[5]. This is possible, if stationary vertical magnetic field doesn’t significantly ex-
ceed critical value (Figure 2, d).

The structure of stability regions for pure oscillating horizontal magnetic field
is shown on Figure 3, a). The addition of constant part to alternating horizontal
field also leads to the transition from harmonic to subharmonic oscillations
(Figure 3, b). In contrast to the case of vertical field, increase of constant horizon-
tal component leads to the emergence of closed bounded tongues as subharmonic
as well as harmonic instability (Figure 3, ¢).
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Figure 3 — Neutral stability curves for horizontal oscillating magnetic field

Amplitude m,, Oe

Conclusions. Based on the analytical solution for the linear approximated
problem of the magnetizable fluid layer free surface stability in the magnetic fields
there were obtained the neutral stability curves for cases of vertical and horizontal
magnetic fields. The structural difference for instability regions for these paramet-
ric excitations was analyzed.
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C. 4. IIOLEJIVEB

Xapvrosckuil HayuonanwHwlll ynusepcumem um. B. H. Kapasuna, Xapvkos, Ykpauna

MAPAMETPUYECKAS HEYCTOWYNUBOCTH CBpBO,HHOﬁ
HOBEPXHOCTH CJ10A HAMATHHYNBAIOIMEUCA KNIKOCTHU
B OCIIMJVIMPYIOIIINUX MATHUTHBIX MTOJIAX

Hccnenyercs 3anaya yCTONYMBOCTH CJI0S1 HAMAarHMUMBAIOILEHCS )KUAKOCTH KOHEYHOM TOJI-
IIMHBI ¥ TIPOU3BONIBHON BA3KOCTH B MarHUTHOM II0JIE, KOTOPOE COCTOHUT U3 TOCTOSIHHOM U OC-
LWJUIMpYIOIeH yacTell. B nuHeliHOM npHOMmKeHNH ¢ UCToNb30BaHueM Teopun dDroke 3amada
CBEJICHA K ypPaBHEHHIO JUTS KBaAPAaTHYHOTO My4yKa MaTPHIL, TI€ B KAUECTBE NapamMeTpa BbICTyMa-
€T aMILTMTY/]a EPUOIUUECKOTO BO3AEHCTBYSL. JIJIst ClTydaeB BEpTHKAIBHOTO U TOPH30HTATBHOTO
MAarHUTHBIX TIOJIEH OMNpe/eNeHbl HeHTpallbHbIe KPUBbIE YCTOHYMBOCTU M MPOAHATM3HPOBAHBI
OTJIMYHS MEXITY STUMH MEXaHU3MaMH BO30YKIEHHS MapaMeTPUIECKOH HEYCTOIIMBOCTH.
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P. H ACKAPFEKOB
Koipevisckuii cocyoapcmeennulii mexnuueckuii yHusepcumem, buwixex, Koipevizcman

HNCIBITAHUA HA KPYYEHUE PESUHOMETAJIVIMYECKHUX OIIOP

BBINONHEHO SKCIepUMEHTAIBHOE HCCIeloBaHue 1e(hOPMUPOBAHKS PE3MHOMETAITMYECKHUX
OIIOp, KOTOpbIE IPEIONaraercsl MCIOab30BaTh B CEHCMO3AIUTHBIX YCTPOICTBaX 37aHUM U
coopyxeHuid. ITomydeHbl 3aBUCUMOCTH KPYTSILErO MOMEHTA X MOAYJIS CABUI'a OT yIila [IOBOPOTa
TOPIIEBBIX CEYEHUH OMOPHI IPU Pa3HOM KOJHMUYECTBE €€ BHYTPEHHHX METAIIMYECKUX TTaCTHH.

HabnromeHus 3a MOBPEKICHUSIMU 3[aHUNA U COOPYKCHHUI TPU CHIIBHBIX 3EM-
JICTPSICCHUSX CBUICTEIBCTBYIOT O TOM, YTO HEOOXOIUMBI HCCIICIOBAHUS, CBA3aH-
HBIC C TCOPETUYCCKUM AHAIM30M U PETHCTPAlUCH MapamMeTpoB KPYTHIEHBIX KO-
neOaHu, KOTOPBIC TPUBOIAT K Pa3pyIICHUSIM U MOTEPE YCTOHUYUBOCTH KOHCTPYK-
muii [1]. Tlpu ceficMuyeckux KoJdeOaHUSIX MPOUCXOAAT MOBPESKACHUS HITU Pa3py-
IICHUS TOPIIEBBIX CTCH, M3TUO IICHTPAJbHBIX YacTeH MPOTSHKCHHBIX B IUIAHE CO-
opyxeHuid. Tak mpu pazpymutessbHoM CriuTakckoM 3emutetpsiceHnn 7.12.1988 T.
B ApMeEHUH B 30HE OCICTBHUS PSIOM CTOSIIME 3[JaHUS MOJYYHIH Pa3BOPOTHI H
HAKJIOHBI B MPOTUBOIIOJIOKHBIX HAMIPABICHUAX (PUCYHOK 1), IpUUEM CMEUICHUS U
MMOBOPOTHI APXUTEKTYPHBIX TMAMATHUKOB M HAJITPOOHBIX KaMHEH MPOU3OLLIN He-
CMOTpSI Ha XOpOIllee KaueCTBO LIEMEHTA.

AHanu3 IOKAa3bIBAET, YTO NP CHWJIBHOM CEHCMHYECKOM BO3ACHCTBUM 4acTh
3[IaHVs, PACIOJIOXKEHHAS Ha C1a00M IPYHTE, HCIIBITBIBAET HEOAHOPOIHYIO OCAIKY,
YTO NPUBOOUT K IOSIBICHUIO TOPHU30HTAIBHOM COCTaBISIONMICH nedopmanuu c
YTIIOBOW (BpamaTebHONH) KOMIIOHEHTOW. CIOBUT TOTIEPEYHBIX CTCH B BEPTHUKAIb-
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