ние и СКО промахов в картинной плоскости (полученные по результатам имитационного моделирования) определяется вероятность поражения цели для заданных условий.

Таким образом, в данной работе кратко описаны этапы, которые необходимо выполнить для расчета вероятности поражения цели и как следствие оценить ее эффективность в тех или иных условиях.

Литература

1 Дубин, Я. М. Пособие по проектированию систем управления ЗУР / Я. М. Дубин, В. А. Калмыков, А. А. Кун — М. : Изд-во МВИРТУ, 1968.-164 с.

В. О. Бондаренко

(БелГУТ, Гомель)

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ВЛИЯНИЯ КОРРОЗИИ НА ПРОЧНОСТЬ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ

Для оценки долговечности и ресурса конструкций в процессе эксплуатации зданий требуется осуществлять прогнозирование их износа. Коррозионные повреждения железобетонных элементов существенно влияют на их прочность, что ведет к снижению проектного срока эксплуатации всего здания.

С использованием программного комплекса ANSYS Mechanical, разработаны компьютерные конечно-элементные модели, позволяющие оценить напряжённо-деформированное состояние композитных балок, подвергшихся коррозионному износу (рисунок 1).

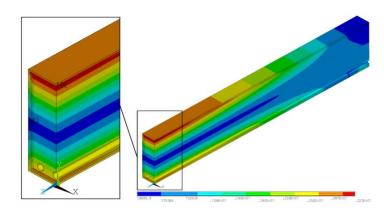


Рисунок 1 — Напряжения (Па) в железобетонной матрице балки с учётом коррозии защитного слоя после 40 лет эксплуатации

Материалы XXVII Республиканской научной конференции студентов и аспирантов «Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях», Гомель, 18–20 марта 2024 г.

В результате расчетов установлено, что при коррозионном износе в агрессивной среде, соответствующем 40 годам эксплуатации, напряжения в конструкции железобетонной балки увеличиваются 3 %, а максимальные деформации — 6 % по сравнению с началом эксплуатации.

Результаты исследования показали, что инструментальная фиксация деформаций элементов строительных конструкций позволяет установить момент начала ускоренного развития коррозии арматуры, что требуется учитывать при анализе технического состояния здания.

М. М. Гринько

(БГУ, Минск)

КОНЕЧНО-ЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ УДАРНОГО НАГРУЖЕНИЯ КОСТНЫХ СТРУКТУР СКЕЛЕТА ЧЕЛОВЕКА

Ударное нагружение различных костных структур скелета человека может возникнуть в результате автомобильных аварий, спортивных травм, падений или других воздействий.

В настоящей работе воздействие ударной нагрузки исследуется на примере ключицы человека.

Целью работы было разработать в среде программного комплекса ANSYS Workbench конечно-элементную модель ключицы. Исследовать влияние области, а также силы удара на ее повреждения. Выявить места концентраций напряжений, ожидаемые места переломов. Важной особенностью является наличие в модели как кортикального слоя, так и внутренней трубчатой кости.

В ходе работы с помощью системы автоматизированного проектирования SolidWorks 2020, а также программного модуля ANSYS SpaceClaim на основании КТ-изображений и 3D-модели ключицы, взятых из открытых источников, была создана САD модель ключицы. Из литературных источников [1, 2] были взяты физикомеханические свойства материалов, а также граничные условия. Проведен сравнительный анализ различных условий нагружения, выявлены опасные участки при фронтальных ударах.