бросу. Исходя из этого, путевые ремонтные работы, связанные с временным ослаблением устойчивости рельсошпальной решётки, разрешается производить, если отклонения температуры рельсовых плетей от температуры их закрепления в течение всего периода работ не превышают значений вых плетей от температуры их закрепления в течение всего периода работ не превышают значений указанных в Технических указаниях по устройству, укладке и содержанию бесстыкового пути.

Так, при выполнении путевых работ с использованием механизированного инструмента допус. каемое превышение температуры рельсовой плети относительно температуры закрепления её в пути лежит в пределах 5–15 °C. При применении тяжелых путеремонтных машин допускаемое отклонение температуры рельсовых плетей с раздельными скреплениями относительно температуры закрепления в пути в сторону повышения лежит в пределах 5–15 °C в прямых участках и в кривых с крепления в пути в сторону повышения лежит в пределах 5–15 °C в прямых участках и в кривых с радиусом более 800 м и 0–15 °C в кривых радиусом менее 800 м, а в сторону понижения – соответственно 25 и 20 °C.

При температуре рельсовых плетей, превышающей температуру их закрепления более, чем указано в Технических указаниях, производить работы, связанные с ослаблением сопротивления бесстыкового пути боковому и вертикальному перемещению, без предварительной разрядки напряжений не допускается. Поэтому выполнять такие работы летом следует утром или вечером и планировать их, руководствуясь прогнозами дорожных геофизических станций.

Угрозу безопасности движения поездов представляют не только дополнительные сжимающие силы, которые могут привести к нарушению устойчивости рельсошпальной решётки, но также и дополнительные растягивающие силы, наличие которые в кривых участках пути может привести к поперечному сдвигу пути внутрь кривой.

УДК 625.143.18

О ПЕРЕКЛАДКЕ РЕЛЬСОВЫХ ПЛЕТЕЙ

С. П. ЗГЕРА, Н. В. КАЛЬНЕЙ, В. И. ТАРАСЕНКО, В. А. ТИМОШЕВИЧ Белорусская железная дорога

На многих участках дороги имеет место интенсивный, до 15–18 мм, боковой износ в наружной нити кривых, и по этой причине действуют многочисленные предупреждения об ограничении скоростей. В условиях острейшего дефицита рельсов в краткие сроки заменить изношенные рельсы в представляется возможным. Однако эта мера вынужденная, и дорога должна изыскивать необходимые средства на приобретение новых рельсов взамен изношенных.

При эксплуатации процессы развития дефектов и повреждений рельсов в прямых и кривых различаются как по структуре образующихся дефектов, так и по интенсивности их развития. В прямых участках пути пропуска по рельсам 100–150 млн тонн брутто в зависимости от многих факторов (качество рельсов, скорости, осевые нагрузки, жесткости пути и др.) под рабочей выкружкой головки могут образовываться внутренние продольные трещины (ВПТ).

При интенсивном боковом износе головки (свыше 1 мм на 10 млн тонн) уложенных в наружные нити кривых рельсов дефекты от ВПТ не успевают образовываться из-за того, что металл в местах ВПТ из зоны рабочей выкружки снимается износом. Поэтому замена рельсов наружных нитей кривых на участках интенсивного бокового износа, имеющих грузонапряженность свыше 25 млн тонн, разрешена старогодными рельсами I группы ВПТ, и контактно-усталостные дефекты не возникают в рельсах наружных нитей кривых с интенсивным износом боковых граней.

В связи с этим в случае большого бокового износа и при малой наработке тоннажа рельсы наружных нитей кривых имеют значительный ресурс работоспособности, и перекладка их с переменой рабочего канта в прямые и внутренние нити кривых целесообразна, весьма эффективна и направлена на продление службы основного элемента верхнего строения пути — рельсов. Указанные особенности в дефектообразовании рельсов позволяют осуществлять замену дефектных по боковому износу рельсов за счет перекладки в наружные нити кривых рельсов с внутренних нитей и прямых участков и укладку изношенных рельсов с наружных нитей кривых во внутренние нити и прямые участки.

Для замены рельсов наружных нитей кривых с боковым износом 15 мм и более подбираются термически упрочненные рельсы с вертикальным износом не более 4 мм с таким расчетом, чтобы

при их стыковании в наружной нити кривой вертикальные и горизонтальные ступеньки по рабочему канту не превышали 2 мм. Не допускаются к укладке в наружные нити кривых дефектные рельсы, а также рельсы с наплывами металла на боковую (ставшую рабочей) грань свыше 2 мм. Перемена рабочего канта при укладке в наружные рельсовые нити может быть допущена только для
рельсов, снятых с внутренних нитей.

Снятые с наружных нитей кривых рельсы с боковым износом до 18 мм могут укладываться с переменой рабочего канта на внутренние нити кривых и в прямые участки пути. Не допускаются к перекладке с переменой рабочего канта рельсы с боковым износом, имеющие выколы металла по

нижней кромке изношенной боковой грани головки с боковым износом более 18 мм.

При формировании рельсовой плети производят визуальный осмотр подошвы рельсов и дефектоскопирование их головок по всей длине, осмотры шейки рельсов в зоне болтовых отверстий и торцов рельсов. На рельсах, перекладываемых с переменой рабочего канта, срубают рельсовые соединители и места их приварки зачищают наждачным кругом, удаляют шлифованием наплывы металла

УДК 625.142.21

АНАЛИЗ СОСТОЯНИЯ ШПАЛЬНОГО ХОЗЯЙСТВА НА ДОРОГЕ

В. В. ЗЕЛИНСКИЙ, В. П. НОВИК Белорусская экселезная дорога

Улучшение состояния шпального хозяйства и продление срока службы деревянных шпал и брусьев для стрелочных переводов является одной из важнейших задач, стоящих перед работниками путевого хозяйства Белорусской железной дороги. Деревянные шпалы и брусья преждевременно выходят из строя по гниению, механическому износу и растрескиванию с торцов. Отмечается рост процента негодных деревянных шпал в среднем по дороге и на всех категориях путей дороги.

На деревянных шпалах уложено 5328,6 км (44,6 %) протяженности железнодорожного пути, в том числе на главных путях 1762,1 км, на станционных – 2725,2 км и на подъездных – 848, 3 км. При этом на Минском отделении всего уложено 902,2 или соответственно 213,6; 551,0 и 137,6 км; на Барановичском – 1256,0 (579,3; 528,2 и 155,5 км); на Брестском – 905,4 (328,9; 452,4 и 124,1 км); на Гомельском – 705,4 (187,1; 414,4 и 103,9 км); на Могилевском – 800,2 (218,3; 404,9 и 177,0 км); на Витебском – 759,4 (234,9; 374,3 и 150,2 км).

Всего на дороге лежит 7906,8 тыс. деревянных шпал, в том числе на главных путях – 3077,8 тыс., на станционных – 3642,6 тыс. и на подъездных – 1192 тыс. шт. При этом общее количество негодных деревянных шпал на начало 2002 года достигло по дороге 1872,4 тыс. шт. и соответственно на главных, станционных и подъездных путях составило 631,6; 903,9 и 331,6 тыс. шт. Средний процент негодности деревянных шпал по дороге – 23,7 %, в том числе на главных путях – 20,5 %, на станционных – 24,8 %, на подъездных – 27,8 %. Негодной на главных путях дороги является, практически, каждая пятая шпала, а в среднем по дороге – каждая четвертая деревянная шпала.

Наибольшее количество деревянных шпал уложено на Волковысской дистанции пути – более 850 тыс. штук, на Брестской дистанции пути – 801, на Оршанской – 477, на Гомельской – 419, а на Воропаевской дистанции – 494 тыс. штук. На указанных дистанциях пути лежит в настоящее время более половины всех деревянных шпал, эксплуатируемых на дороге. Вторая половина деревянных шпал лежит на остальных 15 дистанциях пути или, в среднем, по 3 %. Наименьшее количество шпал – 150 тыс. штук уложено на Бобруйской и 180 тыс. штук на Жлобинской дистанциях пути, т.е. около 2 % от общего количества деревянных шпал на дороге.

Наибольшее количество негодных деревянных шпал — на Волковысской и Брестской дистанциях, соответственно 234 и 248 тыс. штук или почти 30 % от общего количества негодных деревянных шпал на дороге. Более 100 тыс. негодных деревянных шпал лежит на Лидской, Гомельской, Кри-

чевской и Воропаевской дистанциях пути.

Важным показателем надежности работы подрельсового основания является дефектность деревянных шпал. Средняя дефектность шпал по дороге составляет 23,7 %. Наименьшая дефектность