В связи с этим нами был предложен принципиально другой вариант контррельса-протектора, укладываемого снаружи колеи у рамного рельса, сопряженного с криволинейным остряком с расчетым желобом 21 мм, исключающим заклинивание колесной пары. Контррельс-протектор прикрепляют к рамному рельсу горизонтальными болтами через специальные разъемные вкладыши с прокладкой между ними. По мере износа рабочей грани контррельса-протектора величину желоба можно регулировать, заменяя прокладки в разъемных вкладышах в узлах прикрепления его к рамному рельсу. Функции контррельса-протектора заключаются в следующем.

При противошерстном движении экипажа на боковой путь бандаж колес наружной частью входит в соприкосновение с контррельсом-протектором в пределах отвода до подхода к острию криволинейного остряка, и колесная пара смещается внутрь кривой. В результате этого гребень направляющего колеса касается криволинейного остряка в сечении 15 мм и более, это позволяет уменьщить износ острия остряка, а также исключить сход подвижного состава с изношенными гребнями при следовании на боковой путь. Аналогично контррельс-протектор работает при пошерстном

движении экипажа с бокового пути.

Конструктивно в качестве контррельса-протектора в данном случае следует принять стандартный контррельс крестовинного узла стрелочного перевода марки 1/4. Преимуществом данного решения, помимо вышеуказанного, является еще и то, что углы отвода контррельса-протектора соответствуют стандартным контррельсам, поэтому нет необходимости ограничивать скорость движения экипажей, следующих по прямому направлению. Правда, для установки данных контррельсовпротекторов требуется изготовление специальных стрелочных подушек. Но их конструкция достаточно проста, и в первоначальном варианте они могут быть изготовлены в мастерских дистанции пути.

Таким образом, предлагаемый контррельс-протектор, на который получено авторское свидетельство, имеет определенные преимущества по сравнению с уже применяемым, и имеются все основания для экспериментальной проверки его в условиях эксплуатации на Белорусской железной

дороге.

УДК 625.17

ОСОБЕННОСТИ СТРУКТУРЫ ПУТЕВОГО ХОЗЯЙСТВА НА РОССИЙСКИХ ЖЕЛЕЗНЫХ ДОРОГАХ

А. И. ЖУК

Северная железная дорога

С. В. ЛУКЬЯНОВИЧ, А. В. МАРТЫНЕНКО Приволжская железная дорога

Стратегия ведения путевого хозяйства, основы которой заложены в приказе МПС № 12Ц от 1994 г., и развиты в решениях коллегий МПС № 5 от 16.03.99 г. и № 3 от 14.03.01 г., базируется на расширении полигона прогрессивных конструкций пути, насыщении сети дорог современными путевыми машинами и диагностическими средствами, реализации ресурсосберегающих технологий ремонта и текущего содержания пути.

В путевом хозяйстве дороги выделены:

- служба пути, объединяющая дистанции пути и дистанции защитных лесонасаждений;

- дирекция по ремонту пути, куда входят ПМС, рельсосварочные поезда, щебеночные заводы, шпалопропиточные комплексы;

- филиал по ремонту и эксплуатации путевых машин;

- дорожный центр диагностики пути.

Общее руководство путевым хозяйством дороги осуществляет заместитель начальника дороги по пути. Служба пути находится в его подчинении. Она занимается планированием и организацией работ и контролирует планово-экономическую деятельность подразделений.

Стратегия ведения путевого хозяйства, заключающаяся в широком распространении эффективных конструкций пути, в том числе с повторным использованием старогодных материалов, переходе к путевым машинам нового поколения и реализации высокоэффективных технологий ремонта и

содержания пути, – правильная и действительно ресурсосберегающая. Это подтверждается существенным повышением эксплуатационных показателей путевого хозяйства при сохранении доли эксплуатационных расходов на достаточно стабильном уровне.

Главная цель реорганизации и развития путевого комплекса — снижение «путейской» составляющей в себестоимости перевозок и рост производительности труда за счет уменьшения численности работников, при безусловном обеспечении безопасности движения поездов в условиях повышения объемов перевозок, скоростей движения пассажирских поездов, веса грузовых.

Основа технических мер – создание конструкции пути, требующей при заданной надежности минимума совокупных затрат на устройство, ремонты и содержание. Эта задача решается двумя основными способами: совершенствованием конструкции пути, упорядочением средств и техноло.

гий его технического обслуживания.

На российских железных дорогах в качестве базовой конструкции принят бесстыковой путь на железобетонных шпалах с упругими промежуточными скреплениями. Для повышения эффективности этой конструкции необходимо решить следующие основные проблемы: изготавливать рельсы мирового уровня качества; производить в требуемых объемах упругие скрепления; выпускать балласт с кубовидной формой щебенок.

Департамент пути и сооружений тщательно проанализировал направленность работы всех подразделений путевого комплекса, его структуру и систему управления. В настоящее время хозяйство обслуживают 690 предприятий и обособленное подразделение с общей численностью на начало 2003 г. около 245 тыс. чел.

Сделан вывод, что уже созрели условия, при которых можно успешно поэтапно реорганизовать путевой комплекс с существенным сокращением контингента, обеспечив при этом безопасность движения поездов и рост их скоростей. Разработана концепция реорганизации, в основу которой заложены следующие требования:

– во-первых, надо обеспечить мобильность путейцев, так как потери рабочего времени на передислокацию бригад в зависимости от местных условий составляют от 15 до 30 %;

- во-вторых, необходимо пересмотреть всю ведущуюся сегодня в путевом хозяйстве учетноотчетную документацию установленных и не установленных форм и резко снизить ее объем. Анализ деятельности дистанций пути показал, что в их конторах ведется около 500 различных документов, а в ПМС - до 100, не считая бухгалтерской отчетности, причем большая часть этих документов предназначена, прежде всего, для предъявления многочисленным проверяющим и практически не используется в текущей работе;
- в-третьих, периодичность осмотров и проверок нужно привести в соответствие с мощностью пути и мобильными средствами контроля;
- в-четвертых, следует изменить порядок оценки работы бригад линейных отделений, занятых на текущем содержании. Сейчас на них возложена ответственность за общее состояние пути. Это приводит к тому, что при работе бригады в основном вручную стараются устранять все неисправности, в том числе те, которые не представляют угрозу для безопасности движения и ликвидация которых может быть отложена до очередной машинной выправки, более качественной с меньшими затратами. Такой подход приводит к нерациональным затратам труда, преждевременной дестабилизации пути и входит в противоречие с экономической целесообразностью;
- в-пятых, необходимо вернуться к пересмотру норм содержания пути. В течение последних двух-трех лет ряд из них необоснованно ужесточили. Иными словами, в ряде случаев мы возвратились к нормам 50−60-х годов, когда путь был с деревянными шпалами, половина его лежала на песчаном балласте, средний вес рельсов составлял 38−45 кг/м, а основным типом подвижного состава служил двухосный вагон.