В ряде последних работ по некоторым направлениям науки и технике, в том числе и теории электрических цепей, было поставлено под сомнение применение числа e как фундаментальной постоянной. Это связано с тем, что расчеты, базирующиеся на числе e=2,718, имеют в некоторых случаях большие погрешности по сравнению с расчетами, базирующимися на золотом сечении. Возникла проблема перехода от натуральных логарифмов $\ln e = \ln (\Phi^2 \cdot 1,0382) = 0.9624 + 0.0375$ к логарифмам на основе золотого сечения $\Phi^2 = 2,618$.

Коэффициент затухания в логарифмических единицах (lф) на основе золотого сечения Φ^2

$$\alpha = 1 \phi (I_{n+1}/I_n) = 1 \phi (F_{2n+2}/F_{2n}) = 1 \phi \Phi^2 = 1,0 \Phi$$
идий.

Каждая ячейка электрической цепи (см. рисунки 1 и 2) при $n \to \infty$ имеет затухание, равное 1 Фидию $(|\phi \phi^2 = 1)$, т. е. цепь, состоящая из n элементов, имеет затухание n Фидий.

Из сравнения логарифмических единиц на основе числа e и Φ^2 можно установить, что между ними имеется незначительное отличие: $e=2,718=\Phi^2+0,1=\Phi^2.1,0382$ и $e^{0.9624}=\Phi^2=2,618$, но обнаружить это незначительное отличие не всегда удается. Пока же ясно, что основание логарифмов Φ^2 более точно отражает изменения силы тока (напряжения) вдоль однородной электрической цепи. Но в целом проблема Непер или Фидий требует дальнейшего исследования в теории электрических цепей.

УДК 621.372

СТАНДАРТИЗАЦИЯ ВОЛНОВОГО СОПРОТИВЛЕНИЯ ЦЕПЕЙ СВЯЗИ НА ОСНОВЕ «ЗОЛОТОЙ ПРОПОРЦИИ»

Н. Ф. СЕМЕНЮТА

Белорусский государственный университет транспорта

В процессе проектирования систем и сетей электрической связи важная роль отводится стандартизации их параметров. Однако в стандартах часто встречаются субъективные значения параметров и коэффициентов, не имеющие серьезного обоснования. Одними из таких параметров являются волновые (входные/выходные) сопротивление цепей и устройств связи.

Первоначально волновое сопротивление было принято равным 800 Ом с допуском в пределах от 600 до 950 Ом. Такой выбор основывался на тех соображениях, что такие сопротивления имели наиболее распространенные в то время (1926—1929 гг.) за границей кабельные цепи, использовавшиеся только для низкочастотного телефонирования и подтонального телеграфирования. Затем Международным Консультативным Комитетом по Телефонии (МККФ) было принято в качестве основного сопротивление 600 Ом. Однако некоторые государства не приняли эту рекомендацию МККФ вследствие ее сомнительности и применяли в качестве основного сопротивление 800 Ом. Таким образом, уже на начальном периоде установления номинального волнового сопротивления между специалистами возникли разногласия. Усугублялась эта проблема и по мере появления новых линий связи, работающих на различных частотах (радиочастотные и коаксиальные кабели). Остается эта проблема и на сегодняшний день.

В связи с этим возникла проблема стандартизации, т. е. выбора и обоснования системы волновых сопротивлений, подчиняющихся определенным закономерностям. Наиболее часто в стандартизации для установления единства конструкторских и технических параметров устройств и сооружений используют ряды предпочтительных чисел в основу которых положены геометрические прогрессии. Анализ основных принципов формирования действующих систем предпочтительных чисел (СПЧ) позволил установить их тяготение к геометрической прогрессии на основе «золотой» пропорции $\Phi = 1,618$ и $1/\Phi = 0,618$. Поэтому для составления СПЧ волновых сопротивлений цепей связи также предлагается использовать гармоническую геометрическую прогрессию со знаменателем

$$\left(\sqrt{\frac{1}{\Phi}}\right)^n = \left(\sqrt{\overline{\Phi}}\right)^n.$$

Значения волновых сопротивлений, отвечающих гармонизированному ряду СПЧ, незначительно отличаются от субъективно установленных (таблица 1), но их применение позволяет значительно упростить нормирование и расчеты уровней сигналов и затуханий в неоднородных и составных цепях с различными волновыми сопротивлениями.

Таблица 1 - Волновые сопротивления однородных электрических цепей

Цепь связи	Значения волнового сопротивления цепи, кОм		
	применяемые	точные	предлагаемые
Воздушная цепь со стальными цепями	1,300–1,600	$1,618 = \left(\sqrt{\overline{\Phi}}\right)^{-2}$	1,620
Воздушная цепь с медными цепями	0,600	$0,618 = \left(\sqrt{\overline{\Phi}}\right)^2$	0,620
Линия электропередачи	0,300	$0,300 = \left(\sqrt{\overline{\Phi}}\right)^5$	0,300
Симметричный кабель	0,135-0,150	$0,145 = \left(\sqrt{\overline{\Phi}}\right)^8$	0,145
Радиочастотный кабель	0,050	$0,055 = \left(\sqrt{\overline{\Phi}}\right)^{12}$	0,055
То же	0,075	$0,071 = \left(\sqrt{\overline{\Phi}}\right)^{11}$	0,075
11	0,100	$0,114 = \left(\sqrt{\overline{\Phi}}\right)^9$	0,110
"	0,150	$0,145 = \left(\sqrt{\Phi}\right)^8$	0,150
".	0,200	$0,185 = \left(\sqrt{\overline{\Phi}}\right)^7$	0,185

УДК 656.2.08

ВЕРИФИКАЦИЯ ТЕХНОЛОГИЧЕСКИХ АЛГОРИТМОВ ПРОЦЕССОРНО-РЕЛЕЙНОЙ ЦЕНТРАЛИЗАЦИИ

E. B. CUBKO

Белорусский государственный университет транспорта

Создаваемые системы процессорно-релейной централизации (ПРЦ) непосредственно связаны с безопасностью движения поездов и должны удовлетворять всем требованиям, предъявляемым к микроэлектронным устройствам железнодорожной автоматики и телемеханики. Данные высокие требования делают все более актуальной проблему создания корректного программного обеспечения.

Технологические алгоритмы ПРЦ разработаны на аппликативном языке программирования и выполняются в среде, реализующем данную вычислительную модель. Выполнение технологического алгоритма представлено в виде множества тактов, на каждом из которых происходит расчет функции, аргументом которой является текущее состояние системы и её входные воздействия.

Описанная модель позволяет с помощью инструментария доказательства правильности проводить анализ алгоритмов на предмет наличия ошибок и выяснения характеристик поведения системы. В силу того, что система тактируема, возможно описание функции для определения состояния системы в конкретный такт времени. Данная функция описывает множество рассматриваемых состояний (например, все опасные состояния). На основе множества, представленного данной функцией, и содержимого технологических алгоритмов возможно с помощью правил вывода получить функцию состояния системы на предыдущем такте (например, получить всё множество состояний, из которых можно попасть в любое из опасных состояний в течение одного такта). Таким образом можно установить, не прибегая к полному тестированию всех входных состояний, в каком случае может система перейти в опасное состояние в течение одного такта.

Такой подход позволяет эффективно вести поиск ошибок в технологических алгоритмах ПРЦ, уточнять спецификацию, а также диагностировать все возможные сбои и отказы. После проведения верификации системы с помощью данного метода можно утверждать, что в рассматриваемых ситуациях технологические алгоритмы ведут себя математически корректно.

В докладе рассматриваются особенности проведения верификации технологических алгоритмов ПРЦ и показываются основные принципы применения данного подхода.