$$\begin{cases} \rho = 0; \\ P_F = 0; \quad Q_S = 1. \end{cases}$$
(4)

В технических системах условия (4) недостижимы: всегда есть риск нарушения безопасности. Поэтому целесообразно ввести представление о допустимом (или нормативном) состоянии безопасности движения:

$$\begin{cases}
\rho = [\rho]; \\
P_F = [P]; \quad Q_S = [Q],
\end{cases}$$
(5)

где $[\rho]$ и [P] – достаточно малые числа, тогда как [Q] – достаточно большое число.

Обоснование допустимых значений $[\rho]$, [P], [Q] должно быть дано на основе соответствующего техникоэкономического расчета. В первом приближении принимаем

$$\begin{cases}
[P] = 0.05; & [Q] = 0.95; \\
[\rho] = 0.0526,
\end{cases}$$
(5a)

где [р] – критерий допустимого риска.

Данные о количестве и видах нарушений безопасности движения представляются обычно по формам статистической отчетности. Их обобщение может быть дано в виде распределения случаев нарушения безопасности движения по службам железной дороги, например, как в таблице 2.

Таблица 2 - Распределение нарушений безопасности движения по службам

Служба	F, %		S, %		$\rho = F/S$	
	2005 г.	2006 г.	2005 г.	2006 г.	2005г.	2006 г.
Перевозок	8,0	10,2	92,0	89,8	0,0870	0,1136
Локомотивная	36,5	31,6	63,3	68,4	0,5798	0,4620
Вагонная	38,7	41,1	61,2	58,9	0,6340	0,6978
Железнодорожного пути	5,9	8,1	94,2	91,9	0,0616	0,0881
Сигнализации и связи	0,7	1,5	99,6	98,5	0,0060	0,0152
Электроснабжения	1,5	0,7	98,6	99,3	0,0142	0,0070
Пассажирская	0,0	0,0	100,0	100,0	0,0000	0,0000
Грузовой работы	1,4	1,5	98,6	98,5	0,0142	0,0152
Прочие	7,3	5,2	92,7	94,8	0,0788	0,0548

В докладе приводятся примеры анализа риска в работе служб Белорусской железной дороги, изучения уровня риска в отдельной службе за два года, сравнительного анализа уровня риска в работе двух служб.

Анализ уровня риска направлен на разработку и внедрение мероприятий, обеспечивающих снижение рис-

ка до нормативного значения (5а).

Аналогичным образом можно строить и анализировать текущие оперативные характеристики риска по отделениям дороги, по дороге в целом за разные периоды (год, сезон, месяц). Можно анализировать и отдельные виды нарушения безопасности движения в поездной и маневровой работе (например, аварии, случаи брака в работе и т. д.).

УДК 656.222.3

ОСОБЕННОСТИ РАСЧЕТА ЧИСЛА ПУТЕЙ В ПАРКАХ СОРТИРОВОЧНОЙ СТАНЦИИ СО СЛОЖНОЙ РАЗВЯЗКОЙ ПОДХОДОВ

Н. А. КЕКИШ, В. М. КРИВЦОВА

Белорусский государственный университет транспорта

Расчет потребного числа путей на сортировочных и участковых станциях является одним из важнейших этапов анализа технического оснащения. Сопоставление потребного и наличного числа путей позволяет получить достоверную картину соответствия путевого развития объемам выполняемых работ, выявить объек-

тивные причины неудовлетворительной эксплуатационной работы станций, своевременно определить необходимость реконструкции и планировать инвестиции. Поскольку изменение путевого развития (особенно в сторону увеличения путей) сопряжено со значительными капитальными вложениями, решение о таком изменении должно быть строго обоснованным. Ошибка при определении потребного числа путей в любую сторону неизбежно повлечет за собой дополнительные затраты. Поэтому для повышения эффективности управления и планирования реконструктивных мероприятий первостепенное значение имеет адекватность методики расчета реальным условиям эксплуатационной работы станций.

В течение долгого времени в качестве общепринятой использовалась методика расчета числа путей, заложенная в Инструкции по проектированию станций и узлов на железных дорогах СССР (ИПСУ). Потребное количество путей в транзитных и приемо-отправочных парках по этой методике определяется соотношением продожительности операций, выполняемых с поездом, и расчетного интервала прибытия (отправления). В 2006 году были утверждены «Методические рекомендации по расчету числа путей в парках сортировочных и участковых станций Белорусской железной дороги», в целом аналогичные методике ИПСУ с некоторыми уточнениями, касающимися расчета интервалов. Данные рекомендации были успешно применены для расчета потребного числа путей на станциях Жлобин, Витебск, Полоцк, поскольку схемы и технология работы этих станций не имели существенных отклонений от параметров, заложенных при разработке методики.

Однако в данной методике не учтено сокращение пропускной способности прилегающих участков и горловин станции и, соответственно, расчетных интервалов из-за пересечения маршрутов приема и отправления поездов различных категорий, возникающих вследствие нестандартной развязки подходов и схемы станции. В качестве примера можно рассмотреть станцию Барановичи-Центральные. К станции примыкает пять магистральных направлений: на Минск, Брест, Лунинец, Волковыск и Лиду. Особенностями схемы станции являются внутреннее расположение главных путей (между транзитным Минским нечетным парком и Минским четным парком – парком отправления), связь с Лунинецким направлением через станцию Барановичи-Полесские сразу по четырем главным путям, которые примыкают парами в разных горловинах станции. Такая схема обусловливает большое количество враждебных пересечений при приеме-отправлении поездов. Загрузку маршрутов приема увеличивает и высокая интенсивность пассажирского и пригородного движения в Барановичском узле.

Сравним порядок определения расчетных интервалов по традиционной методике и с учетом схемы и технологии работы станции. По традиционной методике расчетный интервал прибытия поездов в расформирование в парк приема (в Западный парк) с Минского направления вычислялся бы по формуле

$$I_{\mathrm{mn}}^{\mathrm{M_{H}}} = \frac{\frac{1440}{\alpha_{\mathrm{pe3}}} - [(N_{\mathrm{Tp}}^{\mathrm{M_{H}}} + N_{\mathrm{nacc}}^{\mathrm{M_{H}}} \varepsilon_{\mathrm{nacc}} + N_{\mathrm{mpur}}^{\mathrm{M_{H}}} \varepsilon_{\mathrm{mpur}}) \frac{1440}{N_{\mathrm{max}}}]}{N_{\mathrm{pac}\varphi}^{\mathrm{M_{H}}} + N_{\mathrm{meor}}^{\mathrm{M_{H}}}}$$

Однако такая формула не учитывает особенностей приема поездов в расформирование с Минского направления. Маршрут приема поездов этой категории пересекают в нечетной горловине маршруты приема и отправления транзитных поездов из и на Лунинец, маршруты приема пассажирских и пригородных поездов из Лунинца (Барановичей-Полесских) по 5-му главному пути (5 ГП); в центральной нечетной горловине – пересечение с маршрутами приема транзитных поездов из Бреста, Волковыска и Лиды. Учет сокращения резерва времени для приема поездов в переработку с Минского направления возможен при включении в формулу времени занятия элементов горловин, в которых происходят пересечения маршрутов:

$$I_{\mathrm{nn}}^{\mathrm{MH}} = \frac{\begin{bmatrix} 1440}{\alpha_{\mathrm{pe3}}} - [(N_{\mathrm{Tp}}^{\mathrm{MH}} + N_{\mathrm{nacc}}^{\mathrm{MH}} \varepsilon_{\mathrm{nacc}} + N_{\mathrm{npur}}^{\mathrm{MH}} \varepsilon_{\mathrm{npur}}) \frac{1440}{N_{\mathrm{max}}} + (N_{\mathrm{Tp}}^{\mathrm{M3}\,\mathrm{ЛуH}} + N_{\mathrm{Tp}}^{\mathrm{Ha}\,\mathrm{ЛуH}}) t_{\mathrm{3aH}}^{\mathrm{rp(Hr)}} + \\ + (N_{\mathrm{nacc}}^{\mathrm{M3}\,\mathrm{ЛyH}(5\Gamma\Pi)} + N_{\mathrm{npur}}^{\mathrm{M3}\,\mathrm{ЛyH}(5\Gamma\Pi)}) t_{\mathrm{3aH}}^{\mathrm{n(Hr)}} + (N_{\mathrm{Tp}}^{\mathrm{M3}\,\mathrm{Bo}} + N_{\mathrm{Tp}}^{\mathrm{H3}\,\mathrm{JM}} + N_{\mathrm{Tp}}^{\mathrm{H3}\,\mathrm{Dp}}) t_{\mathrm{3aH}}^{\mathrm{rp(Hr)}}] \\ - N_{\mathrm{pac}\varphi}^{\mathrm{MH}} + N_{\mathrm{mecr}}^{\mathrm{MH}} \end{bmatrix}.$$

При учете сокращения резерва времени для приема поездов в переработку с данного направления расчетный интервал приема снижается более чем на 30 %, потребное число путей в парке для приема поездов Минского направления увеличивается на 15 % при заданных в расчете размерах движения.

Другая особенность расчета связана с разделением потоков поездов различных категорий с одного направления. Транзитные поезда с Лунинецкого направления прибывают со стороны Минска (по 5 ГП), поезда в переработку – по 9 ГП (двухпутный участок 9 ГП-10 ГП, связывает станции Барановичи-Центральные и Барановичи-Полесские). Движение пассажирских и пригородных поездов этого направления также идет и по 5 ГП, и по 9 ГП. Размеры движения по 5 ГП в четном и нечетном направлениях резко отличаются (непарные размеры движения), поэтому необходимо вести расчет не в парах, а в поездах, и, соответственно, в поездах указывается и максимальная пропускная способность участка. При учете парности движения по максимваль-

ному направлению потребный интервал приема транзитных поездов при заданных размерах движения снижается, а потребное число путей оказывается завышенным.

Анализ показывает, что необходима адаптация типовой методики расчета путей в приемо-отправочных и транзитных парках к условиям конкретных сортировочных станций при нестандартной развязке подходов. Адаптация заключается в учете сокращения резерва времени для приема заданной категории поездов из-за большого количества враждебных пересечений и расчете пропускной способности в поездах (а не в парах) при существенном отличии размеров движения в четном и нечетном направлениях на прилегающих участках.

УДК 656.212.001.57

ПРОГРАММНО-ИМИТАЦИОННЫЙ КОМПЛЕКС ДЛЯ МОДЕЛИРОВАНИЯ РАБОТЫ ЖЕЛЕЗНОДОРОЖНЫХ СТАНЦИЙ НА ОСНОВЕ СУТОЧНОГО ПЛАНА-ГРАФИКА

Д. Н. КОЗАЧЕНКО, Р. В. ВЕРНИГОРА, Р. Г. КОРОБЬЕВА

Днепропетровский национальный университет железнодорожного транспорта им. акад. В. Лазаряна

При планировании организационно-технических мероприятий, направленных на совершенствование технического оснащения и технологии работы железнодорожных станций, возникает проблема получения достоверной оценки показателей их функционирования после реализации проекта. Традиционно для решения данной задачи используется графическая модель в виде суточного плана-графика. Такая модель имеет значительную информационную емкость и обеспечивает высокую скорость поиска и доступа к необходимой информации. В то же время графическая модель имеет ряд недостатков, среди которых наиболее существенными являются низкая скорость построения графиков, а также некоторая упрощенность отображения технологических процессов, что снижает адекватность таких моделей.

Эффективным средством анализа и оценки показателей функционирования станций в различных эксплуатационных условиях является имитационное моделирование станционных процессов на ЭВМ. Однако из-за сложности подготовки исходных данных и анализа результатов имитационное моделирование не нашло широкого применения среди инженерно-технических работников железных дорог. В этой связи в ДИИТе разработан моделирующий комплекс, который объединяет в себе преимущества имитационной и графической моделей. При этом использована технология эргатического моделирования железнодорожных станций, которая предусматривает возможность непосредственного участия лица, принимающего решение (ЛПР), в процессе моделирования для выполнения функций диспетчера станции.

В состав моделирующего комплекса входят модель технологического процесса обслуживания объектов (МТП) и информационная модель (ИМ).

Модель технологического процесса содержит данные об обслуживаемых на станции объектах и используется для имитации их перемещения и обработки, а также для моделирования занятия и освобождения исполнителей технологических операций. В МТП технологический процесс обслуживания объектов каждой категории формализован на основе соответствующего детерминированного конечного автомата (КА), что позволяет моделировать выполнение с каждым объектом всего комплекса технологических операций в соответствии с их взаимной обусловленностью, а также обеспечивает возможность интерактивного участия ЛПР в процессе моделирования для управления работой станции. В ЭВМ каждый КА представляется в виде соответствующего графа переходов. Для автоматизации построения МТП работы железнодорожных станций и реализации их на ЭВМ разработан специальный программный редактор, который обеспечивает графическое введение в ЭВМ соответствующих КА, а также формирование параметров технологических операций и их исполнителей с помощью специализированных форм.

Информационная модель представляет собой изображение суточного плана-графика станции на временной сетке. Она предназначена для предоставления ЛПР информации о текущем состоянии технологического процесса, а также для восприятия от ЛПР управляющих команд и передачи их в МТП. Для построения сетки графика также разработан специальный редактор.

Моделирование работы стандии может выполняться как автоматически, когда порядок обслуживания устанавливается в соответствии с заданной системой приоритетов, так и в интерактивном режиме, когда этот