БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА

Кафедра «Изыскания и проектирование транспортных коммуникаций»

Г.В. АХРАМЕНКО, Н.В. ДОВГЕЛЮК, В.А. ВЕРБИЛО

ОПРЕДЕЛЕНИЕ ЭКСПЛУАТАЦИОННЫХ РАСХОДОВ ПРИ ПРОЕКТИРОВАНИИ НОВЫХ ЖЕЛЕЗНЫХ ДОРОГ

(Пособие по курсовому и дипломному проектированию для студентов строительного факультета и факультета управления процессами перевозок)

Одобрено советом строительного факультета Белорусского государственного университета транспорта

Гомель 2004

Рецензент – заведующая кафедрой «Бухгалтерский учет, анализ и аудит» к.э.н., профессор **В.Г. Гизатуллина**.

Ахраменко Г.В., Довгелюк Н.В., Вербило В.А.

А 956 Определение эксплуатационных расходов при проектировании новых железных дорог: Пособие по курсовому и дипломному проектированию для студентов строительного факультета и факультета управления процессами перевозок. – Гомель: БелГУТ, 2004 - с.

Приведены данные для подсчета эксплуатационных расходов при выборе вариантов трассы с электровозной и тепловозной тягой.

Помещенные в пособии материалы и формулы получены на основе разработанной Гипротранстви и ЦНИИС ом системы единичных норм эксплуатационных расходов.

Предназначено для студентов строительного факультета и факультета управления процессами перевозок при работе над курсовыми и дипломными проектами участка новой железной дороги.

УДК 625.11.003 (075.8)

© Г.В. Ахраменко, Н.В. Довгелюк, В.А. Вербило, 2004.

Содержание

	Общие положения	4
1.	Определение годовых эксплуатационных расходов, зависящих от	
	работы подвижного состава, $C_{\text{зав}}$	5
2.	Определение эксплуатационных расходов, вызванных остановка-	
	ми поездов, $C_{\text{ост.}}$	9
3.	Определение годовых эксплуатационных расходов, не зависящих	
	от работы подвижного состава, $C_{\text{нез}}$	13
4.	Оформление расчетов в пояснительной записке к проекту	16
	Литература	18
	Приложения.	
A.	Сметные цены дизельного топлива, у.е./т (по районам)	19
Б.	Тарифы на электрическую энергию, отпускаемую энергосистема-	
	ми и электростанциями Минэнерго у.е./1000 кВт.ч	20
B.	Время хода t_i , мин, на 1 км пути и сила тяги локомотива $F_{(i)}$, тс,	
	на различных элементах профиля при руководящих уклонах	
	i_p =6÷15‰	21
Γ.	Расходы на 1 поездо-км пассажирского поезда, у.е	33
	Стоимость одного разгона и торможения	33
	Стоимость одного часа простоя грузового поезда	34
	=	

общие положения

Расчеты единовременных и текущих затрат необходимы для сопоставления вариантов и выбора из них экономически целесообразного.

Единовременные затратыопределяются: на строительство новой линии; усиление провозной способности примыкающих направлений; приобретение подвижного состава (вагонов и локомотивов); развитие производства в зоне тяготения к новой линии; постоянные сооружения и подвижной состав сопутствующих видов транспорта в зоне тяготения к новой линии; оборотные средства в пути следования («на колесах»).

В текущие входят расходы: железнодорожного транспорта на рассматриваемом полигоне (включая новую линию и примыкающие направления); других видов транспорта; предприятий в зоне тяготения (связанных с перевозками).

В данном пособии рассматривается методика определения годовых текущих (эксплуатационных) расходов железнодорожного транспорта на участке новой железнодорожной линии.

При проектировании новых железных дорог для сравнения вариантов нет необходимости определять эксплуатационные расходы с большой точностью, в то же время необходимо выявить влияние на величину эксплуатационных расходов основных характеристик вариантов (показателей трассы, плана и профиля, массы поездов, технического оснащения дороги и т.п.). Поэтому представляется возможным не учитывать некоторые виды расходов, не оказывающих существенного влияния на общий уровень затрат и мало различающихся по вариантам (расходы по содержанию станций примыкания, общие для всех вариантов, во многих случаях расходы по штату управления дороги и т.п.).

На основе обработки отчетно-статистических данных по сети железных дорог за ряд лет и анализа намечаемых перспективных изменений в структуре эксплуатационных расходов основные слагаемые этих расходов были распределены по ряду так называемых эксплуатационных измерителей. Эти измерители позволяют достаточно полно учесть влияние плана и профиля вариантов на эксплуатационные расходы, а также на количество затрачиваемого труда и материалов для обеспечения расчетных размеров перевозок по вариантам.

Эксплуатационные расходы условно можно разделить на три группы:

- 1) непосредственно зависящие от работы подвижного состава ($C_{\text{зав}}$);
- 2) вызванные остановками поездов ($C_{\text{ост}}$);
- 3) связанные с содержанием и ремонтом постоянных устройств, т.е. не зависящие от работы подвижного состава ($C_{\text{нез}}$).

Первая группа включает стоимость расходуемого топлива и электроэнергии, расходы по ремонту и реновации подвижного состава, некоторую часть расходов по текущему содержанию и амортизации верхнего строения пути, расходы по содержанию локомотивных бригад, техническому осмотру вагонов и др.

Вторая группа включает расходы, связанные с остановками поездов при скрещениях и обгонах на промежуточных раздельных пунктах и состоят из затрат, вызванных замедлением и разгоном поездов при остановке, и расходов по простою в ожидании обгона или скрещения

Третья группа включает расходы по текущему содержанию главных и станционных путей, расходы по содержанию искусственных сооружений, устройств электроснабжения, связи и СЦБ, раздельных пунктов и пр. Эта группа эксплуатационных расходов, хотя и в меньшей мере, чем первая, тоже зависит от размеров движения, так как стоимость текущего содержания постоянных устройств определяется их мощностью.

Эксплуатационные расходы первой и третьей групп определяются путем суммирования слагаемых эксплуатационных расходов, соответствующих отдельным эксплуатационным измерителям:

где X_i и Y_i - измерители эксплуатационных расходов;

 a_i и k_i - расходные ставки на измеритель.

Сметные цены и тарифы, приведенные в приложениях А и Б, даны по существующим нормативным документам. При проектировании студенты должны принимать цены и тарифы (по согласованию с преподавателем), действующие на момент разработки проекта.

Расчет расходов, связанных с остановками поездов, производится по групповым расходным нормам, зависящих от работы подвижного состава, $(C_{\text{зав}})$.

1 ОПРЕДЕЛЕНИЕ ГОДОВЫХ ЭКСПЛУАТАЦИОННЫХ РАСХОДОВ ЗАВИСЯЩИХ ОТ РАБОТЫ ПОДВИЖНОГО СОСТАВА, C_{3AB}

Величина $C_{\text{зав}}$ определяется методом расходных ставок, суть которого заключается в следующем:

- все расходы, зависящие от работы подвижного состава, разбиваются на части по своему назначению (таблица 1.1, графа 2), причем каждая такая часть в основном зависит от одного какого-либо измерителя работы (таблица 1.1, графа 1);
- устанавливается расходная ставка на каждый измеритель работы (таблица 1.1, графа 4), которая показывает расходы, зависящие от данного измерителя в расчете на один этот измеритель;
- для конкретных условий рассчитывается количество измерителей работы каждого вида (таблица 1.2);
- умножением расходной ставки на соответствующее число измерителей работы получается величина расхода, зависящего от этого измерителя;
- суммированием всех расходов, зависящих от измерителей, определяется величина $C_{\mbox{\tiny 33B}}.$

В таблице 1.1 приведены измерители работы, расходы, зависящие от каждого из них, и величина расхода в расчете на один измеритель (расходная ставка) по сериям локомотивов.

Таблица 1.1 – Измерители работы, зависящие от них расходы и расходные ставки для грузового движения

CIUD	ставки для грузового движения							
Измеритель	Расходы, зависящие от измерителя	Тип локомо-	Расходная					
		тива	ставка, у.е.					
Локомотиво-	Ремонт локомотивов, зависящий от	ВЛ 10	0,256					
километр	пробега	ВЛ 80к	0,308					
	-	2ТЭ 10Л	0,498					
Вагоно-километр	Ремонт вагонов, зависящий от пробега	1	0,0068					
Вагоно-час	Ремонт вагонов, зависящий от времени,							
	и реновационные отчисления	-	0,142					
Локомотиво-час	Ремонт локомотивов, зависящий от	ВЛ 10	1,953					
	времени, и реновационные отчисления	ВЛ 80 ^к	2,076					
		2ТЭ 10Л	3,782					
100 тс.км механиче-	Ремонт локомотивов, смазка ходовых	ВЛ 10	4,58					
ской работы (локо-	частей, текущее содержание верхнего	ВЛ 80к	4,60					
мотива и сил сопро-	строения пути (рельсов, скреплений)	2ТЭ 10Л	6,74					
тивления								
1000 т.км брутто	Текущее содержание шпал и балласта и							
	амортизация верхнего строения пути	-	0,245					
1 кг дизельного	Топливо на тягу поездов плюс расходы							
топлива	на экипировку тепловозов	-	$e_A*+0.91$					
1 квт.ч электро-	Электроэнергия на тягу поездов плюс							
энергии	расходы на экипировку электровозов	-	e_A **+0,054					
Бригадо-час локо-	Содержание локомотивных бригад	Электровоз	7,902					
мотивной бригады	Содержание локомотивных оригад	Тепловоз	8,034					
Примечания.								
* - См. приложение А	А.,** - См. приложение Б.							

Т а б л и ц а 1.2 – Формулы для определения количества измерителей работы в

расчете на один поезд, проведенный по участку

расчете на один поезд, проведенный по участку							
Измеритель	Расчетная формула						
Локомотиво-километр	nL						
Вагоно-километр	mL						
Вагоно-час	mt_{x}						
Локомотиво-час	nt_{x}						
Механическая работа локомотива $R_{\scriptscriptstyle \mathrm{M}}$	$R_{\rm M} = F_{\kappa(i)} l_{\rm i}$						
и сил сопротивления $R_{\rm c}$,	$R_{\rm c} = R_{\rm M} - (R + Q)(H_{\rm K} - H_{\rm H}) 10^{-3}$						
$(R_{\rm\scriptscriptstyle M}+R_{\rm\scriptscriptstyle C})$							
Тонно-километр брутто	(P+Q)L						
Расход дизельного топлива на тягу поезда E	$0.85 R_{\rm M}$						
Расход электроэнергии на тягу поезда A	При постоянном токе $3,42R_{\scriptscriptstyle \rm M}$						
	При переменном токе $3,36 R_{\rm M}$						
Бригадо-часы локомотивной бригады	$t_{\rm x}(1+\kappa_{\rm 6p})$						

В таблице 1.2 приняты следующие условные обозначения:

L – длина участка железной дороги, км;

n — число локомотивов в поезде;

m – число вагонов в поезде; принимается 50 - 60 вагонов;

 $t_{\rm x}$ — время хода поезда по участку, ч; определяется тяговыми расчетами с использованием ЭВМ по программам, разработанным на кафедре «ИПТК» БелГУТа; разрешается определять $t_{\rm x}$ упрощенным способом

$$t_{\rm x} = t_{\rm i} l_{\rm i} \tag{1.1}$$

где t_i - время хода поезда, мин, на 1 км элемента профиля при равномерном движении (приложение B);

 $F_{\kappa(i)}$ - сила тяги локомотива на *i*- том элементе профиля, то (приложение A);

 $R_{\rm M}$ – механическая работа силы тяги локомотива, тс.км;

 $R_{\rm c}$ – работа сил сопротивления, тс.км.

Время хода определяется по приведенной формуле для участка железной дороги между пунктами остановки. Если же участок железной дороги расположен не между остановочными пунктами, то из $R_{\rm M}$ вычитается величина $4,17(P+Q)(v_{\rm k}^2-v_{\rm H}^2)~10^{-6}$, учитывающая приращение кинетической энергии поезда при изменении скорости от начальной $v_{\rm H}$ до конечной $v_{\rm K}$;

 l_i – длина *i*-того элемента профиля, км;

P – масса локомотива, т;

Q – масса состава поезда брутто, т; определяется из условия равномерного движения с расчетной скоростью на руководящем подъеме

$$Q = \frac{F_{\kappa} - P(\omega_{o}' + i_{p})}{\omega_{o}'' + i_{p}}$$
 (1.2)

Значения расчетных величин, входящих в данную формулу, принимаются в соответствии с ПТР.

Значение Q также может быть принято без расчетов по кривым $Q=f(i_p)$, приведенным в пособии [3] или в таблице 1.3;

 $H_{\rm H}, H_{\rm K}$ – начальная и конечная отметки участка трассы, м;

 $\kappa_{\rm бp}$ — коэффициент, учитывающий долю подготовительнозаключительного и вспомогательного времени работы локомотивных бригад; принимается 0.2-0.3 для грузовых поездов;

 $\nu_{\mbox{\tiny H}}, \nu_{\mbox{\tiny K}}$ – скорость движения поезда в начале и конце рассматриваемого участка, км/ч.

Таблица 1.3-Значения массы состава Q, т, для различных типов локомотивов

Тип локомо-		Величина руководящего уклона i_p , ‰								
тива	6	7	8	9	10	11	12	13	14	15
2TЭ10	7400	6500	5800	5200	4800	4200	3800	3500	3300	3100
ТЭ3	5400	4750	4150	3750	3350	3000	2750	2550	2400	2250
ВЛ23	4500	4000	3550	3250	2900	2600	2400	2200	2050	2000
ВЛ10	6000	5250	4600	4200	3850	3500	3250	3000	2800	2550
ВЛ60 ^к	4750	4200	3750	3400	3000	2750	2500	2350	2150	2050
ВЛ80 ^к	6300	5500	4800	4400	4000	3650	3400	3100	2900	2700

По формулам, приведенным в таблице 1.2, определяется количество измерителей работы в расчете на 1 поезд (отдельно по грузовому и обратному направлениям). Из таблицы 1.1 выбираются расходные ставки. На основании этих данных подсчитываются зависящие расходы по пробегу на 1 грузовой поезд. Расчет удобно вести в форме таблицы, приведенной ниже.

Таблица 1.4 – Определение величины C_{3aB} в расчете на один грузовой поезд,

проведенный по участку железной дороги								
Измеритель	Расходная ставка на измеритель, у.е.	Расчет количества измерителей на один поезд	Расходы, зависящие от измерителя, у.е. (гр.2хгр.3)					
Для поезда грузового направления								

.....

Для поезда негрузового направления

Годовые зависящие расходы по пробегу поездов находят умножением расходов, приходящихся на один поезд, на расчетное годовое число поездов соответственно в грузовом и не грузовом направлениях.

В грузовом направлении годовое расчетное число грузовых поездов определяется по формуле

$$N_{\rm rp} = \frac{\Gamma_{\rm rp} 10^{-6}}{Q_{\rm H}},\tag{1.3}$$

где $\Gamma_{\rm rp}$ – грузонапряженность нетто в грузовом направлении, млн.т.км/км;

 $Q_{\rm H}$ – масса состава нетто, т;

$$Q_{\rm H} = 0.71 \cdot Q$$
, (1.4)

В не грузовом направлении годовое расчетное число грузовых поездов определяется с учетом порожних составов

$$N_{\rm o} = 0.71N_{\rm o}' + 0.29N_{\rm rp}, \tag{1.5}$$

где $N_{\rm o}^{'}$ - годовое число полногрузных грузовых поездов в не грузовом направлении при размерах перевозок $\Gamma_{\rm o}$,

$$N_0' = \frac{\Gamma_0 10^6}{O_{\rm H}},\tag{1.6}$$

Значения единичных норм расходов для обоих видов тяги применительно к основным сериям локомотивов приведены в таблице 1.1. Если в задании на курсовой проект указаны локомотивы, не включенные в таблицу 1.1, то значения единичных норм расходов принимаются по согласованию с руководителем курсового проектирования.

Эксплуатационные расходы по пробегу пассажирских поездов в тех случаях, когда число их невелико и не влияет существенно на выбор варианта, можно определить по системе групповых норм сразу в обоих направлениях пвижения

$$C_{3\text{aB}}^{\text{nacc}} = 2 \cdot 365 L n_{\text{nacc}} c , \qquad (1.7)$$

где $n_{\text{пасс}}$ – число пар пассажирских поездов в сутки на расчетный год (при ведено в задании на проектирование);

c – укрупненная норма на 1 поездо-км передвижения пассажирского поезда, у.е. (приложение Γ).

2 ОПРЕДЕЛЕНИЕ ЭКСПЛУАТАЦИОННЫХ РАСХОДОВ, ВЫЗВАННЫХ ОСТАНОВКАМИ ПОЕЗДОВ, $C_{ m oct}$

Расходы, связанные с остановками поездов при скрещениях и обгонах на промежуточных раздельных пунктах, состоят из затрат, вызванных замедлением и разгоном поездов при остановке и расходов по простою поездов в ожидании обгона или скрещения.

Расчет этих затрат в курсовых и дипломных проектах можно определить по групповым расходным нормам. Годовые эксплуатационные расходы, вызванные остановками, (тыс у.е./год), определяются по формуле

$$C_{\text{oct}} = N_{\text{rp}} \cdot K_{\text{oct}} \cdot (c_{\text{p.3}} + t_{\text{ct}} + c_{\text{п.ч}} / 60) \ 10^{-3},$$
 (2.1)

где $K_{\text{ост}}$ – количество остановок, приходящееся на одну пару поездов;

 $c_{\rm p,3}$ – стоимость одного разгона и торможения (приложение Д);

 $t_{\rm cr}$ – средняя продолжительность стоянки пары грузовых поездов, мин;

 $c_{\text{п.ч}}$ – стоимость одного часа простоя поезда (приложение E).

Количество остановок грузовых поездов на промежуточных раздельных пунктах для скрещений и обгонов без учета стоянок по техническим надобностям на однопутных линиях, включая участки с двухпутными вставками, приходящиеся на пару сквозных грузовых поездов, определяется по формуле

$$K_{\text{ocr}} = \frac{(T_{\text{m}} + T_{\text{o}}) \cdot (A_{\text{l}} \cdot n_{\text{rp}} + 2A_{2} \cdot n_{\text{nacc}})}{1440 - (A_{\text{l}} \cdot n_{\text{rp}} + 2A_{2} \cdot n_{\text{nacc}})} - A_{\text{l}} \cdot \frac{L}{L_{\text{yq}}}, \quad (2.2)$$

где $T_{\rm m}$, $T_{\rm o}$ - время хода по варианту трассы пары грузовых поездов без учета разгонов и замедлений, мин;

 A_1,A_2 - коэффициенты, показывающие сокращение числа остановок грузовых поездов при скрещениях и обгонах при частично — пакетном графике по сравнению с не пакетным (таблицы 2.1).

 $n_{\rm rp}$ – число пар грузовых поездов в сутки равное $n_{\rm rp} = N_{\rm rp}/365$;

 $n_{\text{пас}}$ — число пар пассажирских поездов в сутки,

L – длина варианта трассы, км;

 L_{yy} – длина участка, в пределах которого грузовые поезда не имеют остановок по техническим надобностям ($L_{yy} \approx 250 \div 300$ км).

Таблица 2.1-Значения коэффициентов А 1 и А2

<u>п _{пас}</u>	A	- 1	A	2
$n_{\rm rp}$	αпак=0,5	αпак=0,67	αпак=0,5	αпак=0,67
0	0,630	0,557	0,837	0,838
0,2	0,652	0,577	0,870	0,875
0,4	0,670	0,592	0,894	0,897
0,6	0,686	0,607	0,906	0,908
0,8	0,694	0,616	0,920	0,927
1,0	0,700	0,621	0,930	0,937

Средняя продолжительность стоянки пары грузовых поездов на промежуточных раздельных пунктах ($t_{\rm cr}$) зависит от графика движения поездов и системы СЦБ и определяется по формулам:

1) при непакетном графике движения на участках с автоматической и полуавтоматической блокировкой и на участках с двухпутными вставками при

безостановочных скрещениях поездов при диспетчерской централизации стрелок и автоблокировке

$$T_{\text{cr}} = (t_{\text{m}} + t_0)(0.10 + 0.25\gamma) + (\tau_1 + \tau_2) + t_{\text{p.s.}}$$
 (2.3)

2) при частично- пакетном графике движения на участках с диспетчерской централизацией стрелок или автоматической блокировке

$$T_{\text{cT}} = (t_{\text{m}} + t_{\text{o}})(0.10 + 0.3 \ \alpha_{\text{пак}}) + 1.5 \ \alpha_{\text{пак}} I + (\tau_{1} + \tau_{2}) + t_{\text{p.s.}}$$
 (2.4)

где $t_{\rm m}, t_{\rm o}$ – среднее время хода пары грузовых поездов по перегону без учета разгона и замедления, мин;

у – коэффициент заполнения пропускной способности участка;

 τ_1 τ_2 — станционные интервалы неодновременного прибытия и скрещения поездов (таблица 2.2.);

 $t_{\rm p,3}$ – поправка времени на разгон и замедление , мин ($t_{\rm p,3} {\approx} 3$ мин)

 $\alpha_{\text{пак}}$ — коэффициент пакетности, равный отношению числа поездов, следующих в пакетах, к общему числу поездов (принимается равным, как правило, не более 0,67)

I – интервал между поездами в пакете (8÷10 мин).

Таблица 2.2 – Станционные интервалы, мин

Устройство СЦБ	τ_1	τ_2
Полуавтоматическая блокировка с механической централизацией стрелок	5	3
Автоблокировка с электрической централизацией стрелок	4	1
Диспетчерская централизация	2,5	0,5

Среднее время хода пары грузовых поездов по перегону определяется по формуле

$$t_{\rm m} + t_{\rm o} = \frac{T_{\rm m} + T_{\rm o}}{m_{\rm nep}} + 4$$
 (2.5)

где m_{nep} — число перегонов на участке трассы, равное в условиях курсового и дипломного проекта количеству раздельных пунктов;

4 –уменьшение периода графика на перегоне, примыкающем к участковой станции, мин.

Коэффициент заполнения пропускной способности участка определяется по формуле

$$\gamma = (n_{\rm rp} + \varepsilon_{\rm co} \cdot n_{\rm co} + \varepsilon_{\rm mac} \cdot n_{\rm mac}) / N_{\rm max}$$
 (2.6)

где $n_{\rm rp}$, $n_{\rm c6}$, $n_{\rm nac}$ — количество пар грузовых, сборных и пассажирских поездов в сутки соответственно;

 ε_{co} , ε_{nac} – коэффициенты съема грузовых поездов сборными и пассажирскими поездами соответственно;

 $N_{\rm max}$ – максимальная пропускная способность однопутного участка при параллельном непакетном графике движения поездов.

$$N_{\text{max}} = 1440/T$$
 (2.7)

где 1440- количество минут в сутках;

Т – период параллельного непакетного графика, мин

$$T = t_{\rm m} + t_{\rm o} + \tau_1 + \tau_{2} + t_{\rm p.s.}, \tag{2.8}$$

В отдельных случаях, по согласованию с руководителем курсового проектирования, расчет расходов, вызванных остановками поездов, можно выполнить приближенным методом с использованием коэффициентов, учитывающих затраты на остановки как долю от расходов по пробегу поездов

$$C_{\text{oct}} = (K_{\text{p.3}} + K_{\text{np}}) C_{\text{3aB}}$$
 (2.9)

где $K_{\rm p,3}$ – коэффициент, учитывающий расходы на разгон и замедление грузовых поездов на остановках (таблица 2.3);

 $K_{\rm np}$ – коэффициент, учитывающий расходы по простою поездов при остановках (таблица 2.4).

Т а б л и ц а 2.3.—Значение коэффициента, учитывающего расходы по простою поездов, $K_{\rm np}$

Процент использования	Тепловозная тяга при $n_{\rm rp}$			Элек	трическа	я тяга пр	и п гр	
руководящего уклона	10	15	20	25	10	15	20	25
До 20	0,09	0,10	0,12	0,13	0,08	0,10	0,11	0,12
20÷50	0,10	0,13	0,14	0,15	0,10	0,12	0,13	0,14
Более 50	0,13	0,15	0,17	0,19	0,11	0,13	0,15	0,16

Таблица2.4. – Значение коэффициента, учитывающего расходы на разгон и замелления. К...

замедления, к р.з				
Процент использования руководящего уклона	Число пар грузовых поездов $n_{\rm rp}$			
	10	115	20	25
До 20	0,07	0,10	0,13	0,14
20÷50	0,06	0,09	0,11	0,13
Более 50	0,05	0,07	0,09	0,11

3 ОПРЕДЕЛЕНИЕ ГОДОВЫХ ЭКСПЛУАТАЦИОННЫХ РАСХОДОВ, НЕ ЗАВИСЯЩИХ ОТ РАБОТЫ ПОДВИЖНОГО СОСТАВА, C_{He3}

Величина $C_{\text{нез}}$ включает расходы на содержание, ремонт и реновацию устройств связи ($C_{\text{нез}\,1}$), устройств СЦБ ($C_{\text{нез}\,2}$), контактной сети ($C_{\text{нез}\,3}$), тяговых подстанций ($C_{\text{нез}\,4}$), раздельных пунктов ($C_{\text{нез}\,5}$).

Кроме того, учитываются расходы по снегоборьбе ($C_{\text{нез 6}}$). Должны учитываться также расходы по водозащите, если варианты трассы железной дороги значительно различаются по этому фактору.

Что касается содержания и ремонта главных путей, то эти расходы, как отмечалось выше (см. общие положения), частично зависят от размеров движения и учтены в составе $C_{\scriptscriptstyle 3 BB}$.

Таким образом, к независящим следует также отнести расходы на реновацию верхнего строения главных путей ($C_{\text{нез.7}}$), амортизацию земляного полотна ($C_{\text{нез.8}}$) и искусственных сооружений ($C_{\text{нез.9}}$).

Порядок и нормативы для расчета независящих расходов ($C_{\text{нез.1}} - C_{\text{нез.6}}$) указаны в таблице 3.1.

Расходы на реновацию верхнего строения пути ($C_{\text{нез.7}}$), амортизацию земляного полотна ($C_{\text{нез.8}}$) и искусственных сооружений ($C_{\text{нез.9}}$) определяются по формулам

$$C_{\text{He3.7}} = (q_{\text{BCII}}/100)S_{\text{BCII}},$$
 (3.1)

$$C_{\text{He3.8}} = (q_{3.n}/100)S_{3.n};$$
 (3.2)

$$C_{\text{He3.9}} = \sum_{i=1}^{i} (q_{\text{uc(i)}} / 100) S_{\text{uc(i)}},$$
 (3.3)

где $q_{\text{всп}}$, $q_{\text{з.п}}$, $q_{\text{ис}}$ — нормативы соответствующих амортизационных отчислений, % (таблица 3.2);

 $S_{\text{всп}}$, $S_{\text{з.п}}$, $S_{\text{ис(i)}}$ – стоимость верхнего строения пути, земляного полотна, i-того искусственного сооружения, у.е. (подсчитывается при определении стоимости всей трассы по вариантам).

Та б л и ц а 3.1 - Нормативы для расчета эксплуатационных расходов, не зависящих от перевозочной работы, $C_{\rm he3.1}$ – $C_{\rm he3.6}$

	портабот пот расстану с нез. о нез. о							
Условное обозначе-		11		ритель, тыс.у.е./год				
ние расходов	Наименование расходов	Измеритель	Размеры движения реальных пар поездов/год					
пис расходов			менее 24	24 и более				
С _{нез. 1}	Содержание линейных устройств связи (воздушная линия связи)	1 км эксплуатаци- онной длины	0,26	0,31				
С _{нез.2}	Содержание линейных устройств автома- тики и телемеханики: а) диспетчерская централизация; б) автоблокировка; в) полуавтоматическая блокировка	То же	1,75 1,68 0,26	1,86 1,75 0,27				
-			Постоянный ток	Переменный ток				
С _{нез.3}	Содержание контактной сети	_ " _	1,96	1,84				
С _{нез.4}	Содержание тяговых подстанций (телеуправляемых)	1 тяговая подстанция	59,0	63,0				

Продолжение таблицы 3.1

Условное обозначение	Наименование расходов	Измеритель	Управление ст	релками и сигн	алами
расходов	Паименование расходов	нэмерттель	нецентрализо-	централизо-	диспетчерская
расходов			ванное	ванное	централизация
С _{нез.5}	Содержание раздельных пунктов	1 раздельный пункт			
	а) разъезд с одним разъездным путем при электри-				
	ческой тяге:			43,8	
	на постоянном токе		70,6	43,6	21,5
	на переменном токе		70,4	41,9	21,3
	при тепловозной тяге		68,8		19,8
	б) разъезд с двумя разъездными путями при элек-				
	трической тяге:			52,8	30,5
	на постоянном токе		77,4	52,4	30,0
	на переменном токе		77,0	49,1	26,7
	при тепловозной тяге		73,7		
	в) промежуточная станция с тремя приемо-				
	отправочными путями при электрической тяге:				
	на постоянном токе		127,6	191,6	85,6
	на переменном токе		126,8	100,9	84,8
	при тепловозной тяге		121,6	95,4	79,3
С _{нез.6}	Очистка от снега главных и станционных путей,	1 км эксплуатаци-	Катего	рия заносимо	ости*
	предупредительные мероприятия по борьбе со	онной длины пу-	1	П	Ш
	снегом и водой, содержание защитных лесона-	тей, заносимых	1	11	"
	саждений	снегом	1,30	0,65	0,33

^{* 1} категория заносимости — выемки глубиной от 0,4 до 8,5 м; станционные территории и нулевые места, расположенные на косогорах. II категория — мелкие выемки до 0,4 м и нулевые места. III категория — низкие насыпи до 0,65м в равнинной местности и до 1 м — на косогорах и сильно заносимых участках пути.

Таблица3.2 – Нормативы амортизационных отчислений на полное восстановление (реновацию) основных фондов

Основные фонды	Норматив, %
Земляное полотно	0,2
Верхнее строение пути	0,2
Мосты железобетонные, бетонные, каменные	1,0
Мосты металлические с пролетными строениями длиной:	
до 25м	1,0
– более 25м	1,0
Мосты деревянные и металлические на деревянных опорах	5,0
Грубы и лотки железобетонные, бетонные, каменные, чугунные	1,0
Трубы и лотки деревянные	10,0
Грубы стальные гофрированные	1,7
Поддерживающие и защитные сооружения	1,7
Регуляционные и укрепительные сооружения мостов	2,5

4 ОФОРМЛЕНИЕ РАСЧЕТОВ В ПОЯСНИТЕЛЬНОЙ ЗАПИСКЕ К ПРОЕКТУ

В записке должно быть отмечено, что определение эксплуатационных расходов производилось в соответствии с рекомендациями, изложенными в данном пособии.

- В записке следует выделить следующие разделы:
- а) определение эксплуатационных расходов, зависящих от работы подвижного состава;
- б) определение эксплуатационных расходов, связанных с остановками на раздельных пунктах;
- в) определение эксплуатационных расходов, не зависящих от работы подвижного состава;
 - г) итоги подсчетов и оценка вариантов по эксплуатационным расходам.
- В каждом из разделов необходимо привести расчетные формулы с пояснением входящих в них величин.

При подсчетах t_x и $R_{\rm M}$ на ЭВМ в приложении к записке должны быть приведены результаты расчета, выданные принтером.

При определении этих величин по равномерным скоростям таблицы подсчетов $t_i l_i$ и $F_{\kappa(i)} l_i$ также должны быть помещены в приложении (форма таблицы приведена ниже).

При заполнении таблицы обязательно соблюдение следующей точности подсчетов: времени хода (t_i и t_i l_i) — 0,01 мин; силы тяги ($F_{\kappa(i)}$) — 0,1 тс; механической работы ($F_{\kappa(i)}$ l_i) 0,1 тс.км; итоги граф 5 и 10 — 0,1 мин, 7 и 12 — 1 тс.км.

Та	Т а б л и ц а 4.1 – Подсчет времени хода ($t_i l_i$) и механической работы ($F_{\kappa(i)} l_i$)											
Вариа	ант			;		L .	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	км;	
локом	иотив .			;		ма	масса состава $\it Q$ т.					
			Грузов	ое напра	вление			Обратно	ое напра	вление		
Километр	l, km	i_{K} , %0	$t_{\mathrm{i}},~\mathrm{MWH/KM}$	$t_{\mathrm{i}} l_{\mathrm{i}}$, мин	<i>F</i> _{K(i)} , TC	$F_{\mathrm{K}(\mathrm{i})}l_{\mathrm{i}}$,TC.KM	$i_{\rm K}$, %0	$t_{\rm i.}$, мин/км	$t_{\mathrm{i}}l_{\mathrm{i}}$, мин	F _{K(i)} , TC	$F_{\mathrm{K}(\mathrm{i})}l_{\mathrm{i},\mathrm{TC.KM}}$	
1	2	3	4	5	6	7	8	9	10	11	12	
	Σl	-		$\sum t_i l_i$,	-	$\Sigma F_{\kappa(i)}l$	i		$\sum t_{i}l_{i}$,	_	$F_{\kappa(i)}l_i$	

В тексте записки перед подсчетом $C_{\rm зав}^{\rm груз}$ следует привести таблицу определения основных измерителей эксплуатационных расходов на 1 поезд. Если подсчеты расходов, зависящих от работы подвижного состава, производятся на все расчетные сроки, то в тексте записки следует привести подробный расчет $C_{\rm зав}^{\rm груз}$ только для одного срока по каждому вариант трассы. Все остальные расчетные и итоговые данные надо привести в таблице следующей формы

Т а б л и ц а 4.2 — Подсчет эксплуатационных расходов по грузовому движению, зависящих от работы подвижного состава

on and a proof of a pr												
	Гру	зовое напр	авление	Обр	атное напр	авление	Итого					
Год эксплуатации	<i>с</i> _{гр} , у.е./поезд	N гр, поездов в год	с _{гр}	с о, тыс у.е. год	N о, поездов год	с _о N _{о,} тыс.у.е./год	С _{зав} туз, Тыс.у.е./год					
			I вариа	HT								
2												
5												
10												
20 (перспектива)												
			II вариа	HT								
2												
5												
10												
20 (перспектива)												

В этой таблице значения $c_{\rm rp}$, представляющие собой расходы на один поезд, следует приводить с точностью до 0,1 у.е., а произведения $c_{\rm rp}$ $N_{\rm rp}$, $c_{\rm o}$ $N_{\rm o}$ и сумму $C_{\rm sab}$ $c_{\rm rp}$ $c_{\rm rp}$ $c_{\rm rp}$ $c_{\rm rp}$ $c_{\rm o}$ $c_{\rm rp}$ $c_{\rm o}$ $c_{\rm rp}$ $c_{\rm o}$ $c_{\rm rp}$ $c_{\rm o}$ c_{\rm

Итоги подсчетов рекомендуется привести в таблице следующей формы

Таблица4.3 – Подсчет суммарных эксплуатационных расходов по вариантам трассы

Вариант трассы	Наименование расходов	Эксплуатационные расходы по годам эксплуатации, тыс.у.е./год							
Tpuccia		2	5	10	20				
	$C_{3\mathrm{aB}}^{\mathrm{rpy3}}$								
1	C_{oct}								
I	$C_{3\mathrm{aB}}^{\mathrm{пасc}}$								
вариант	C_{He_3}								
	$C = C_{3aB}^{rpy3} + C_{3aB}^{nacc} + C_{oct} + C_{He3}$								
	$C_{ m 3aB}^{ m \ rpy3}$								
2	$C_{\text{ост}}$								
2	$C_{3\mathrm{aB}}^{\mathrm{пасc}}$								
вариант -	C_{He_3}								
	$C = C_{\text{3aB}}^{\text{rpy3}} + C_{\text{3aB}}^{\text{nacc}} + C_{\text{oct}} + C_{\text{He3}}$								

Примечание.

По согласованию с руководителем курсового проектирования подсчеты эксплуатационных расходов могут быть произведены только для одного расчетного срока – 10 го года эксплуатации.

Литература

- 1. Турбин И.В. и др. Изыскания и проектирование железных дорог. М.: Транспорт, 1989. 479с.
- 2. Гибшман А.Е. Определение экономической эффективности проектных решений на железнодорожном транспорте. -М.: Транспорт, 1985.-173 с.
- 3. Акимов В.И., Вербило В.А., Довгелюк Н.В., Тяговые расчеты при электровозной и тепловозной тяге: Учебное пособие. -Гомель: БелИ-ИЖТ,1990.-66с.
- 4. Луговой П.А., Цыпкин Л.Г., Аукуционек Р.А. Основы техникоэкономических расчетов на железнодорожном транспорте.- М.: Транпорт, 1973 -412 с
- 5. Довгелюк Н.В. Гурок Р.Г. Выполнение инженерных расчетов на ЭВМ ІВМпри проектировании железных дорог. -Гомель, БелГУТ,1996.-65 с.
- 6. Акимов В.И., Вербило В.А., Довгелюк Н.В. Определение объемов работ и строительной стоимости для сравнения вариантов трассы. Гомель: БелИИЖТ, 1992.-30 с.
- 7. *Акимов В.И., Вербило В.А., Довгелюк Н.В.* Определение эксплуатационных расходов для сравнения вариантов трассы. Гомель: БелИИЖТ, 1992.-30 с.

ПРИЛОЖЕНИЕ А

(справочное) Сметные цены дизельного топлива, у.е./т (по районам)

_	Цена <i>е</i> _Е *,
Территориальные районы	y.e./T
І. Россия: Башкирская, Марийская, Мордовская, Татарская и Чувашская республи-	
ки; Астраханская, Белгородская, Брянская, Владимирская, Волгоградская,	
Вологодская, Воронежская, Нижегородская, Ивановская, Тверская, Калуж-	
ская, Кировская, Костромская, Самарская, Курская, Санкт-Петербургская,	
Липецкая, Московская, Новгородская, Орловская, Пензенская, Псковская, Ря-	
занская, Саратовская, Смоленская, Тамбовская, Тульская, Ульяновская, Яро-	
славская области	
Беларусь: Брестская, Витебская, Гомельская, Гродненская, Минская, Могилевская	
области	490
II. Архангельская область	472,2
II а. Мурманская область	481,9
III. Латвия, Литва, Эстония; Калининградская область	463,4
IV. Украина: Винницкая, Волынская, Луганская, Днепропетровская, Донецкая,	
Житомирская, Закарпатская, Запорожская, Ивано-Франковская, Киевская,	
Крымская, Львовская, Николаевская, Одесская, Полтавская, Ровенская, Сум-	
ская, Тернопольская, Харьковская, Херсонская, Хмельницкая, Черкасская,	
Черновицкая области; Республика Молдова	460,4
V. Дагестанская, Кабардино-Балкарская, Калмыцкая, Северо-Осетинская, Ингуш-	
ская республики; Краснодарский и Ставропольский края; Ростовская область	467,0
	167,6
VII. Удмуртская республика; Курганская, Оренбургская, Пермская, Екатеринбург-	
	465,3
VIII. Алтайский край, Красноярский край южнее 60-ой параллели; Кемеровская,	
Новосибирская, Омская области, Томская и Тюменская области южнее 60-ой	
±	468,4
	412,3
1Х. Бурятская Республика; Иркутская область южнее 60-ой параллели, Читинская	
	471,2
Х. Приморский край, Хабаровский край южнее 55-ой параллели, Амурская об-	503,9
ласть	
XI. Казахстан: Актюбинская, Алма-Атинскя, Восточно-Казахстанская, Гурьевская,	
Джамбульская, Джезказганская, Карагандинская, Кзыл-Ординская, Кокче-	
тавская, Кустанайская, Мангышлакская, Семипалатинская, Талды-	470,3
Курганская, Тургайская, Уральская, Целиноградская и Чимкентская области	
XII. Киргызстан: Иссык-Кульская, Нарынская, Ошская, Таласская области; районы	
республиканского подчинения	
Таджикистан: Кулябская, Курган-Тюбинская, Худжандская области (Ленина-	
бадская); районы республиканского подчинения	
Туркменистан: Ашхабадская, Красноводская, Марыйская, Ташаузская, Чард-	
жоузская области	460.4
Узбекистан: Андижанская, Бухарская, Джизакская, Кашкардарьинская, Наман	469,1
ганская, Самаркандская, Сырдарьинская, Сурхандарьинская, Ташкент-	
ская, Ферганская, Хорезмская области	
* Цену на топливо $e_{\rm F}$ при подсчетах в таблице 1 перевести в у.е./кг.	l

ПРИЛОЖЕНИЕ Б

(справочное)
Тарифы на электрическую энергию, отпускаемую энергосистемами и электростанциями, у.е./1000 кВт.ч

электроетанциями, у.е./ 1000 квт. I	
Энергосистемы	Тариф <i>e</i> _A *,y.e. 1000 кВт.ч
Главцентрэнерго: Нижний Новгород, Иваново, Кострома, Липецк, Моск	
ва, Орел, Рязань, Тамбов, Ташкент, Тула, Чувашэнерго.	34,2
Тверь, Пенза, Мордовэнерго.	28,5
Самара, Саратов, Ульяновскэнерго	20,9
Главсевзапэнерго: Тверьэнерго	41,8
Брянск, Смоленск, Ярославльэнерго	34,2
Карелэнерго, Санкт-Петербургэнерго	28,5
Главюжэнерго: Белгород, Воронеж, Грозный, Краснодар, Курск, Ростов,	
Ставрополь и Севказэнерго	34,2
Волгоградэнерго	20,9
Главуралэнерго: Киров и Удмуртэнерго	34,2
Оренбург, Пермь, Екатеринбург, Тюмень, Челябинск и Башкирэнерго	20,9
Главвостокэнерго: Бурятэнерго	41,8
Барнаул, Новосибирск и Омскэнерго	28,5
Кузбасс и Томскэнерго	23,8
Иркутск и Красноярскэнерго	20,9
Главсеверовостокэнерго: Амур, Дальэнерго, Хабаровск, Читаэнерго	41,8
Якутскэнерго	38,0
Минэнерго Украины: Винница, Киев, Львов, Одесса и Крымэнерго	38,0
Донбасс и Харьковэнерго	34,2
Днепроэнерго	28,5
Минэнерго Казахстана: Кустанай, Павлодар, Целинэнерго и Южказэнер	41,8
Алма-Ата, Караганда и Алтайэнерго	34,2
Другие главные энергоуправления: Белглавэнерго, Латвглавэнерго, Ли-	
товглавэнерго, Эстонглавэнерго	41,8
Азглавэнерго, Армглавэнерго, Грузглавэнерго и Минэнерго Узбекистана	34,2
* Тариф на электроэнергию при подсчетах в таблице 1.1 перевести в у	

Время хода $t_{\rm i}$, мин, на 1 км пути на различных элементах профиля при

1.Тепловоз

										ПЛОВОЗ
Уклон элемен-	$i_{\rm p} = 6$	5‰	$i_p = 7$	7‰	$i_{\rm p}=8$	8‰	$i_{\rm p}=9$	9‰	$i_p=1$	0‰
та профиля, ‰	$t_{\rm i}$	$F_{\kappa(i)}$	$t_{\rm i}$	$F_{\kappa(i)}$	$t_{\rm i}$	F K(i)	t i	$F_{\kappa(i)}$	$t_{\rm i}$	$F_{\kappa(i)}$
15										
14										
13										
12										
11										
10									2,56	50,6
9							2,56	50,6	2,31	46,4
8					2,56	50,6	2,31	46,4	2,07	42,4
7			2,56	50,6	2,26	46,0	2,00	41,2	1,82	38,0
6	2,56	50,6	2,22	45,2	1,94	40,0	1,74	36,4	1,58	33,2
5	2,14	44,0	1,88	38,8	1,67	34,8	1,52	31,6	1,40	28,8
4	1,82	38,0	1,56	32,4	1,41	29,6	1,30	27,2	1,20	25,1
3	1,45	30,0	1,30	27,2	1,18	24,8	1,09	22,8	1,02	21,2
2	1,18	24,8	1,07	22,4	0,98	20,8	0,90	18,8	0,85	17,6
1	0,94	19,8	0,85	17,6	0,79	16,4	0,75	15,6	0,71	14,8
0	0,71	15,4	0,67	14,0	0,65	13,4	0,63	12,8	0,60	12,2
-1	0,60	12,2	0,60	12,2	0,60	12,2	0,60	12,2		
-2										

Примечания: 1. На всех спусках, круче указанных в таблице, принимать б) силу тяги тепловоза на спусках до 3‰ - 6,1 тс,

^{2.} Уклон каждого элемента профиля должен приниматься

ЖЕНИЕ В ное)

и сила тяги локомотива $F_{\rm \kappa(i)}$, тс, руководящем уклоне $i_{\rm p}=6.....15\%$ 2 ТЭ 10

$i_{\rm p} =$	11‰	$i_p = 1$	2‰	$i_p = 1$	3‰	<i>i</i> _p =]	4‰	<i>i</i> _p =]	15‰	Уклон элемен-
$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	t_{i}	F ((I)	$t_{\rm i}$	F к(i)	$t_{\rm i}$	F к(i)	та профиля, ‰
								2,56	50,6	15
						2,56	50,6	2,35	47,2	14
				2,56	50,6	2,35	47,2	2,22	45,2	13
		2,56	50,6	2,35	47,2	2,18	44,1	2,03	41,6	12
2,56	50,6	2,35	47,2	2,14	43,6	2,00	41,2	1,88	38,8	11
2,31	46,4	2,14	43,6	1,97	40,4	1,82	38,0	1,71	35,7	10
2,07	42,4	1,94	40,0	1,79	37,2	1,67	34,8	1,58	33,2	9
1,85	38,4	1,74	36,4	1,62	34,0	1,52	31,6	1,43	29,2	8
1,64	34,4	1,54	32,0	1,45	30,0	1,36	28,4	1,28	26,4	7
1,45	30,0	1,36	28,4	1,28	26,4	1,21	25,2	1,14	24,0	6
1,28	26,4	1,21	25,2	1,13	23,8	1,07	22,4	1,02	21,2	5
1,11	23,2	1,03	21,6	0,98	20,8	0,92	19,2	0,88	18,4	4
0,94	19,8	0,90	18,8	0,85	17,6	0,80	16,8	0,77	16,2	3
0,80	16,8	0,76	16,0	0,73	15,2	0,70	14,4	0,6	14,0	2
0,67	14,0	0,65	13,4	0,63	12,8	0,60	12,2	0,60	12,2	1
0,60	12,2	0,60	12,2	0,60	12,2					0
										-1
										-2

а) время хода на 1 км пути – 0,60 мин;

а на спусках круче 3% - 0.

с учетом кривых для грузового и обратного направлений.

2.Тепловоз

2.1									
<i>i</i> _p = 6	5‰	$i_p = 7$	7‰	$i_p = 8$	8‰	i _p = 9‰		i _p = 10‰	
$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$	$t_{\rm i}$	F к(i)	$t_{\rm i}$	F (i)	$t_{\rm i}$
								2,93	40,4
						2,93	40,4	2,66	36,4
				2,93	40,4	2,66	36,4	2,40	32,4
		2,93	40,4	2,60	35,4	2,40	32,4	2,18	29,4
2,93	40,4	2,55	34,6	2,30	31,1	2,14	29,0	1,93	26,2
2,55	34,6	2,24	30,3	2,04	27,6	1,88	25,5	1,69	23,0
2,18	29,4	1,94	26,2	1,71	23,4	1,60	21,8	1,45	19,4
1,82	24,8	1,62	22,0	1,45	19,8	1,31	18,0	1,20	16,5
1,43	19,6	1,29	17,7	1,15	15,8	1,07	14,7	1,00	13,7
1,10	15,2	1,00	13,7	0,93	12,6	0,88	11,7	0,84	11,2
0,86	11,4	0,81	10,4	0,77	9,9	0,73	9,0	0,71	8,6
0,69	8,1	0,66	7,4	0,65	7,1	0,63	6,6	0,61	6,4
0,60	6,0	0,60	6,0	0,60	6,0	0,60	6,0	0,60	6,0
	2,93 2,55 2,18 1,82 1,43 1,10 0,86 0,69	2,93 40,4 2,55 34,6 2,18 29,4 1,82 24,8 1,43 19,6 1,10 15,2 0,86 11,4 0,69 8,1	ti F k(i) ti 2,93 2,93 2,93 40,4 2,55 2,55 34,6 2,24 2,18 29,4 1,94 1,82 24,8 1,62 1,43 19,6 1,29 1,10 15,2 1,00 0,86 11,4 0,81 0,69 8,1 0,66	ti F k(i) ti F k(i) 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	t_i $F_{s(i)}$ t_i $F_{s(i)}$ t_i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_i $F_{\kappa(i)}$ t_i $F_{\kappa(i)}$ t_i t_i t_i $F_{\kappa(i)}$ t_i t_i t_i t_i t_i $F_{\kappa(i)}$ t_i <	t_i $F_{\kappa(i)}$ t_i $F_{\kappa(i)}$ t_i t_i $F_{\kappa(i)}$ t_i	t_i $F_{s(i)}$ t_i $F_{s(i)}$ t_i t_i $F_{s(i)}$ t_i $F_{s(i)}$ t_i $F_{s(i)}$ t_i $F_{s(i)}$

Примечания: 1. На всех спусках, круче указанных в таблице, принимать б) силу тяги тепловоза на спусках до 4‰ - 3,0 тс, 2. Уклон каждого элемента профиля должен приниматься

ТЭ 3

193											
<i>i</i> _p =	=11‰	$i_p = 1$	12‰	$i_p = 1$	13‰	$i_p = 1$	14‰	$i_p = 1$	15‰	Уклон элемен-	
$t_{\rm i}$	F K(i)	$t_{\rm i}$	F к(i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F к(i)	$t_{\rm i}$	та профиля, ‰	
								2,93	40,4	15	
						2,93	40,4	2,79	38,2	14	
				2,93	40,4	2,79	38,2	2,60	35,4	13	
		2,93	40,4	2,79	38,2	2,60	35,4	2,45	33,2	12	
2,93	40,4	2,73	37,6	2,56	34,6	2,42	32,8	2,26	30,6	11	
2,69	37,0	2,56	34,6	2,38	32,0	2,22	30,0	2,10	28,6	10	
2,47	33,6	2,34	31,4	2,18	29,4	2,03	27,6	1,91	25,8	9	
2,24	30,3	2,10	28,6	1,97	26,6	1,82	24,8	1,71	23,4	8	
2,04	27,6	1,87	25,5	1,75	23,8	1,62	22,0	1,52	20,7	7	
1,79	24,4	1,67	22,7	1,56	21,2	1,45	19,8	1,36	18,7	6	
1,56	21,2	1,45	19,8	1,36	18,7	1,28	17,6	1,20	16,5	5	
1,33	18,3	1,25	17,2	1,18	16,1	1,10	15,2	1,04	14,3	4	
1,14	15,6	1,05	14,6	1,00	13,7	0,95	12,9	0,92	12,2	3	
0,95	12,8	0,90	12,0	0,88	11,5	0,83	10,9	0,81	10,5	2	
0,80	10,4	0,78	10,0	0,75	9,4	0,72	8,8	0,71	8,4	1	
0,69	8,1	0,66	7,5	0,65	7,2	0,64	6,9	0,63	6,6	0	
0,60	6,0	0,60	6,0	0,60	6,0	0,60	6,0	0,60	6,0	-1	
										-2	
										1	

а) время хода на 1 км пути – 0,60 мин; а на спусках круче 4‰ – 0. с учетом кривых для грузового и обратного направлений.

3. Электровоз

	3. электровоз									
Уклон элемен-	$i_{\rm p} = 6$	5‰	$i_p = 7$	7‰	$i_p = 8$	8‰	i _p = 9‰		i _p = 10‰	
та профиля, ‰	$t_{\rm i}$	F к(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$
15										
14										
13										
12										
11										
10									1,39	34,9
9							1,39	34,9	1,26	32,0
8					1,39	34,9	1,25	31,8	1,15	29,4
7			1,39	34,9	1,23	31,1	1,13	28,4	1,10	27,0
6	1,39	34,9	1,22	31,2	1,11	28,0	1,10	27,0	1,07	24,0
5	1,20	30,8	1,12	28,2	1,08	25,5	1,06	23,2	1,03	20,8
4	1,11	27,6	1,07	24,0	1,03	21,2	1,00	19,4	0,97	17,6
3	1,05	22,4	1,01	19,6	0,97	17,4	0,94	15,8	0,92	14,4
2	0,97	17,4	0,93	15,3	0,90	13,9	0,88	12,8	0,85	12,0
1	0,88	13,2	0,85	11,9	0,82	10,9	0,80	10,2	0,78	9,5
0	0,78	9,6	0,75	8,6	0,72	8,0	0,71	7,6	0,69	7,0
-1	0,60	5,0	0,60	5,0	0,60	5,0				
-2										

Примечания: 1. На всех спусках, круче указанных в таблице, принимать б) силу тяги тепловоза на спусках до 3‰ - 2,5 тс, 2. Уклон каждого элемента профиля должен приниматься

ВЛ23

D712	B)123										
<i>i</i> _p =	=11‰	$i_p = 1$	12‰	$i_p = 1$	13‰	<i>i</i> _p =1	14‰	$i_p = 1$	5‰	Уклон элемен-	
$t_{\rm i}$	F K(i)	$t_{\rm i}$	F к(i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F к(i)	$t_{\rm i}$	та профиля, ‰	
								1,39	34,9	15	
						1,39	34,9	1,29	32,8	14	
				1,39	34,9	1,29	32,8	1,20	30,8	13	
		1,39	34,9	1,28	32,4	1,20	30,8	1,13	28,8	12	
1,39	34,9	1,27	32,4	1,18	30,2	1,12	28,4	1,11	27,2	11	
1,26	32,0	1,17	29,8	1,12	28,2	1,10	27,0	1,09	25,2	10	
1,15	29,5	1,11	27,6	1,09	25,6	1,08	24,8	1,06	23,2	9	
1,11	28,0	1,09	25,6	1,07	23,6	1,05	21,8	1,03	20,6	8	
1,08	24,8	1,05	22,4	1,03	21,2	1,01	19,4	0,98	18,2	7	
1,04	21,2	1,02	20,0	0,99	18,4	0,97	17,2	0,95	16,4	6	
1,00	18,4	0,97	17,4	0,95	16,0	0,93	15,8	0,91	14,4	5	
0,94	15,8	0,92	15,0	0,90	13,6	0,88	12,8	0,87	12,4	4	
0,89	13,5	0,87	12,5	0,85	12,0	0,83	11,4	0,81	10,6	3	
0,83	11,2	0,81	10,4	0,79	9,8	0,77	9,5	0,75	9,1	2	
0,75	9,2	0,73	8,2	0,72	7,8	0,71	7,7	0,69	7,0	1	
0,68	6,9	0,66	6,4	0,64	5,9	0,63	5,8	0,63	5,6	0	
0,60	5,0	0,60	5,0	0,60	5,0	0,60	5,0	0,60	5,0	-1	
										-2	
										1	

а) время хода на 1 км пути – 0,60 мин; а на спусках круче 3‰ – 0. с учетом кривых для грузового и обратного направлений.

4. Электровоз

Уклон элемен-	$i_p = 0$	5‰	$i_p = 7$	7‰	$i_p = 8$	8‰	$i_p = 9$	9‰	i _p = 10‰	
та профиля, ‰	$t_{\rm i}$	F (i)	t_{i}	F (i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	t_{i}	F K(i)	$t_{\rm i}$
15										
14										
13										
12										
11										
10									1,28	46,0
9							1,28	46,0	1,03	43,4
8					1,28	46,0	1,03	43,4	1,00	39,6
7			1,28	46,0	1,03	43,4	0,99	38,8	0,96	35,8
6	1,28	46,0	1,02	43,2	0,98	37,6	0,95	34,8	0,92	31,4
5	1,02	43,1	0,97	36,1	0,93	32,6	0,90	29,8	0,87	27,7
4	0,96	35,8	0,92	31,4	0,88	28,7	0,85	26,0	0,82	24,0
3	0,90	30,0	0,85	26,7	0,82	24,2	0,79	22,1	0,76	21,0
2	0,83	24,7	0,79	22,0	0,76	20,1	0,73	18,7	0,71	17,3
1	0,74	19,3	0,71	17,7	0,69	16,2	0,67	15,5	0,66	14,3
0	0,66	14,3	0,64	13,8	0,63	12,8	0,62	12,1	0,60	11,2
-1	0,60	11,2	0,60	11,2	0,60	11,2	0,60	11,2		

Примечания: 1. На всех спусках, круче указанных в таблице, принимать б) силу тяги тепловоза на спусках до 3‰ - 5,6 тс, 2. Уклон каждого элемента профиля должен приниматься

ВЛ10

$i_p = 1$	11‰	$i_p = 1$	12‰	$i_p = 1$	3‰	$i_p = 1$	14‰	$i_p = 1$	15‰	Уклон элемен-
$t_{\rm i}$	$F_{\kappa(i)}$	$t_{\rm i}$	F к(i)	$t_{\rm i}$	t_{i}	F (i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$	та профиля, ‰
								1,28	46,0	15
						1,28	46,0	1,04	44,0	14
				1,28	46,0	1,03	43,7	1,01	40,8	13
		1,28	46,0	1,03	43,7	1,01	40,8	0,98	38,0	12
1,28	46,0	1,03	43,2	1,01	40,6	0,98	37,6	0,96	35,6	11
1,03	43,5	1,00	40,1	0,98	37,6	0,95	34,8	0,93	32,6	10
1,00	40,1	0,97	36,4	0,95	34,8	0,92	32,2	0,90	30,2	9
0,96	35,8	0,94	33,2	0,91	31,2	0,89	29,3	0,87	27,6	8
0,92	32,3	0,90	30,2	0,88	28,8	0,86	26,8	0,84	25,5	7
0,88	28,8	0,86	27,2	0,84	25,8	0,82	24,1	0,80	22,7	6
0,84	25,5	0,82	24,1	0,80	22,6	0,78	21,3	0,76	20,1	5
0,79	22,4	0,77	21,2	0,75	20,0	0,73	18,8	0,72	17,9	4
074	19,3	0,72	18,2	0,70	17,1	0,69	16,3	0,68	15,4	3
0,69	16,6	0,67	15,4	0,66	14,4	0,65	13,9	0,63	13,2	2
0,64	13,8	0,63	12,7	0,61	11,7	0,60	11,2	0,60	11,2	1
0,60	11,2	0,60	11,2	0,60	11,2					0
										-1

а) время хода на 1 км пути – 0,60 мин; а на спусках круче 3‰ – 0. с учетом кривых для грузового и обратного направлений.

5. Электровоз

	J.						элсктровоз			
Уклон элемен-	$i_{\rm p} = 6\%$ $i_{\rm p} = 7\%$			7‰	$i_p = 8$	8‰	$i_p = 9$	9‰	i _p = 10‰	
та профиля, ‰	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$
15										
14										
13										
12										
11										
10									1,38	36,8
9							1,38	36,8	1,06	34,4
8					1,38	36,8	1,05	34,4	1,02	31,2
7			1,38	36,8	1,05	34,4	1,00	30,4	0,98	28,0
6	1,38	36,8	1,04	33,2	1,00	30,4	0,96	26,8	0,93	24,8
5	1,04	33,2	1,00	29,7	0,95	26,4	0,91	23,6	0,88	21,6
4	0,98	28,0	0,94	25,2	0,90	22,8	0,88	20,5	0,82	18,8
3	0,91	23,6	0,87	21,2	0,83	19,0	0,80	17,4	0,76	16,0
2	0,83	19,2	0,79	17,2	0,76	15,6	0,73	14,4	0,71	13,4
1	0,75	15,0	0,72	13,7	0,69	12,6	0,67	11,7	0,65	10,8
0	0,66	11,4	0,63	10,6	0,62	9,8	0,60	9,2	0,60	9,2
-1	0,60	9,2	0,60	9,2	0,60	9,2				

Примечания: 1. На всех спусках, круче указанных в таблице, принимать б) силу тяги тепловоза на спусках до 3‰ - 4,6 тс, 2. Уклон каждого элемента профиля должен приниматься

ВЛ 60^к

D/I (<i>5</i> 0									
$i_p =$	11‰	$i_p = 1$	12‰	$i_{\rm p} = 1$	13‰	$i_{\rm p} = 1$	4‰	$i_{\rm p} = 1$	15‰	Уклон элемен-
$t_{\rm i}$	F K(i)	t_{i}	F K(i)	$t_{\rm i}$	$t_{\rm i}$	F (i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$	та профиля, ‰
								1,38	36,8	15
						1,38	36,8	1,07	35,2	14
				1,38	36,8	1,07	34,8	1,03	32,4	13
		1,38	36,8	1,06	34,4	1,03	32,4	1,02	31,2	12
1,38	36,8	1,05	34,0	1,03	32,4	1,00	30,4	0,98	28,6	11
1,05	34,0	1,03	31,6	1,00	29,9	0,98	28,0	0,95	26,4	10
1,03	31,6	0,99	29,2	0,97	27,2	0,94	25,6	0,91	23,6	9
0,98	28,6	0,95	26,4	0,93	24,8	0,91	23,2	0,88	22,0	8
0,94	25,8	0,92	24,0	0,89	22,4	0,87	21,0	0,84	19,6	7
0,90	22,9	0,87	21,2	0,85	20,0	0,82	18,8	0,80	17,6	6
0,85	20,2	0,82	18,8	0,80	17,6	0,78	16,9	0,76	15,6	5
0,80	17,5	0,77	16,4	0,75	15,5	0,74	14,9	0,72	14,0	4
0,74	14,9	0,72	14,2	0,71	13,4	0,69	12,7	0,67	12,0	3
0,69	12,6	0,67	11,8	0,65	11,2	0,64	10,6	0,63	10,2	2
0,63	10,2	0,61	9,7	0,60	9,2	0,60	9,2	0,60	9,2	1
0,60	9,2	0,60	9,2							0
										-1
										I .

а) время хода на 1 км пути – 0,60 мин; а на спусках круче 3‰ – 0. с учетом кривых для грузового и обратного направлений.

6. Электровоз

o. onexip							0200			
Уклон элемен-	$i_p = 0$	5‰	$i_{\rm p} = 7\%_{\rm o}$		$i_{\rm p} = 8\%$ o		$i_{\rm p} = 9\%_0$		i _p = 10‰	
та профиля, ‰	$t_{\rm i}$	$F_{\kappa(i)}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$
15										
14										
13										
12										
11										
10									1,36	49,0
9							1,36	49,0	1,03	46,0
8					1,36	49,0	1,03	45,6	0,99	42,2
7			1,36	49,0	1,00	44,6	094	37,6	0,95	38,0
6	1,36	49,0	1,00	44,6	0,97	40,0	0,92	35,6	0,90	33,6
5	1,00	44,4	0,95	38,4	0,92	35,6	0,88	31,6	0,85	29,4
4	0,94	36,8	0,86	30,4	0,87	30,8	0,82	27,6	0,80	25,4
3	0,87	31,2	0,83	28,4	0,80	25,8	0,76	23,6	0,74	21,6
2	0,80	25,8	0,76	23,2	0,73	21,2	0,71	19,5	0,68	18,1
1	0,72	20,6	0,69	18,6	0,67	17,2	0,64	15,7	0,62	14,8
0	0,65	16,0	0,62	14,6	0,59	13,4	0,58	12,5	0,57	11,8
-1	0,56	11,6	0,55	10,8	1,36	49,0	1,36	49,0	1,36	49,0
-2	1,36	49,0								

Примечания: 1. На всех спусках, круче указанных в таблице, принимать б) силу тяги тепловоза на спусках до 4‰ - 5,4 тс, 2. Уклон каждого элемента профиля должен приниматься

ВЛ 80к

ВЛ	80									
<i>i</i> _p =	=11‰	$i_{\rm p} = 12\%$ $i_{\rm p} =$		$i_p = 1$	13‰	$i_{\rm p} = 1$	4‰	$i_{\rm p} = 1$	15‰	
$t_{\rm i}$	F (i)	$t_{\rm i}$	F к(i)	$t_{\rm i}$	$t_{\rm i}$	F K(i)	$t_{\rm i}$	F K(i)	$t_{\rm i}$	
								1,36	49,0	15
						1,36	49,0	1,05	46,8	14
				1,36	49,0	1,03	46,0	1,02	44,6	13
		1,36	49,0	1,03	46,0	1,00	43,2	0,98	40,4	12
1,36	49,0	1,03	46,0	1,00	43,2	0,97	39,6	0,94	37,6	11
1,03	45,8	0,99	42,4	0,97	39,6	0,94	36,8	0,91	34,4	10
0,99	42,2	0,95	38,2	0,93	36,4	0,90	33,8	0,88	32,0	9
0,95	38,0	0,92	35,0	0,90	33,4	0,87	31,2	0,85	29,4	8
0,91	34,0	0,88	31,6	0,86	30,0	0,83	28,4	0,81	26,8	7
0,87	31,2	0,83	28,4	0,82	27,2	0,80	25,2	0,77	24,4	6
0,82	27,6	0,80	25,4	0,77	24,0	0,75	22,2	0,73	21,2	5
0,77	24,0	0,75	22,0	0,73	20,8	0,71	19,6	0,69	18,6	4
0,72	20,4	0,70	18,8	0,68	18,0	0,67	17,2	0,64	16,4	3
0,67	17,2	0,65	16,0	0,63	15,2	0,61	14,4	0,60	13,7	2
0,61	14,1	0,59	13,2	0,58	12,5	0,56	11,6	0,56	11,2	1
0,56	11,5	0,55	10,8	0,55	10,8	0,55	10,8	0,55	10,8	0
0,55	10,8									-1
										-2

а) время хода на 1 км пути – 0,55 мин;

а на спусках круче 4% - 0. с учетом кривых для грузового и обратного направлений.

ПРИЛОЖЕНИЕ Г

(справочное)

Расходы на 1 поездо-км пассажирского поезда, у.е.

Доля использова-	Тепловозная тяга Электрическая тяга									
ния руководящего		Руководящий уклон, ‰								
уклона, %	6	9	12	16	6	9	12	15		
До 20	1,25	1,28	1,30	1,35	1,22	1,23	1,26	1,30		
От 20 до 50	1,31	1,36	1,45	1,55	1,25	1,26	1,29	1,33		
Более 50	1,44									

ПРИЛОЖЕНИЕ \mathcal{I}

(справочное)

Стоимость одного разгона и торможения поезда, у.е.

Тип	Средняя масса		Среднеходо	вые скорости	движения, к	м/ч
локомотива	состава	40	50	60	70	80
361	1000	1,24	1,83	2,56	3,47	4,44
980	3000	2,92	4,40	6,29	8,54	11,05
TILC	5000	4,59	7,01	10,12	13,64	17,81
Тепловозы	7000	6,25	9,63	14,01	18,76	24,66
Электровозы постоянного тока	1000 3000 5000 7000	1,00 1,54 4,13 5,76	1,5 3,87 6,29 8,77	2,09 5,52 9,00 13,00	2,86 7,43 12,17 16,89	3,72 9,74 15,70 21,94
Электровозы переменного тока	1000 3000 5000 7000	0,91 2,19 3,52 4,92	1,31 3,24 5,44 7,47	1,85 4,73 7,68 10,67	2,49 6,40 10,35 14,33	3,18 8,27 13,38 18,70
Примеч	нание.		. IV (120 I	·) //T . T)		

Среднеходовая скорость движения равна $V_x = \frac{(120 \cdot L)}{(T_m + T_o)}$

ПРИЛОЖЕНИЕ Е

(справочное)
Стоимость одного часа простоя грузового поезда, у.е. (без учета приведенных капиталовложений в подвижной состав и стоимости грузов)

Macca		Тип локомотива										
локомотива Q , т	ТЭ3	2ТЭ10	ВЛ23	ВЛ8	ВЛ10	ВЛ60 ^к	ВЛ80 ^к					
2000	8,42	9,15	5,12	5,33	5,53	5,96	7,87					
3000	8,93	9,66	5,63	5,84	6,04	6,47	8,38					
4000	9,44	10,17	6,14	6,35	6,55	6,98	8,89					
5000	9,94	10,67	6,64	6,85	7,05	7,48	9,39					
6000	10,45	11,18	7,15	7,36	7,56	7,99	9,90					
7000	10,96	11,69	4,66	7,87	8,07	8,50	10,41					