Список литературы

- 1 Динамика грузооборота по видам грузов и формам транспортного обслуживания [Электронный ресурс]. Режим доступа: https://scienceforum.ru/2021/article/2018026220. Дата доступа: 10.04.2023.
- 2 Транспорт в России 2022 [Электронный ресурс]: стат. сб. / Росстат. М., 2022. 101 с. Режим доступа: https://rosstat.gov.ru/storage/mediabank/Transport_2022.pdf. Дата доступа: 10.04.2023.
- 3 Транспорт в России 2020 [Электронный ресурс] : стат. сб. / Росстат. М., 2020. 108 с. Режим доступа : https://rosstat.gov.ru/storage/mediabank/UbzIvBZj/Transport. Дата доступа : 10.04.2023.
- 4 **Кударов, Р. С.** Мониторинг пассажиропотоков, формирующих входной пассажиропоток на станции «Пушкинская» в часы «пик» / Р. С. Кударов, П. В. Герасименко // Шаг в будущее. Неделя науки-2006 : материалы науч.-техн. конф. студентов, аспирантов и молодых ученых / ред. В. В. Сапожников. 2006. С. 189–191.
- 5 **Герасименко, П. В.** Оценивание рисков необеспечения своевременной доставки груза железнодорожным транспортом / П. В. Герасименко, Г. Б. Титов // Проблемы экономики и управления на железнодорожном транспорте: материалы VIII Междунар. науч.-практ. конф. Киев: Гос. экон.-технол. ун-т трансп., 2013. С. 293–295.
- 6 Герасименко, П. В. Прогнозирование доставки грузов железнодорожным транспортом РФ по 2025 год // Транспорт в интеграционных процессах мировой экономики : материалы III Междунар. науч.-практ. онлайн-конф. Гомель : БелГУТ, 2022. С. 117–120.

УДК 531.1:004

ИСПОЛЬЗОВАНИЕ ПРОГРАММЫ MATHCAD ДЛЯ РЕШЕНИЯ ЗАДАЧИ КИНЕМАТИКИ

Э. Ф. МУРЗИНА

Башкирский государственный аграрный университет, г. Уфа, Республика Башкортостан

Математические дисциплины являются базой для последующего изучения инженерных дисциплин и закладывают основы инженерного мышления будущего специалиста. Несмотря на то, что в нашем университете придерживаются традиционного подхода к обучению инженерных дисциплин, использование прикладных программ при решении задач давно стало требованием [1, 331]. В связи с этим, студентам направления подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» предлагается на первой лабораторной работе по дисциплине «Математическая обработка экспериментальных данных» произвести математическую обработку в пакете MathCAD [2, 80] классической задачи кинематики, аналитическое решение которой они знают. Колесико радиуса R = 0.4 м катится по прямолинейной балке без скольжения. Центр колесика имеет скорость по-

стоянную и равную $v_c = \pi/2$ м/с. Точка M лежит на продолжении радиуса CA колесика, MA = a = 0,2 м. В начальный момент радиус CA занимал нижнее вертикальное положение. Нам требуется составить уравнения движения точки M по заданному движению механизма в декартовой системе координат; найти траекторию движения точки M; определить скорость, касательное, нормальное и полное ускорение точки M; вычислить радиус кривизны траектории; построить графики зависимостей скорости и касательного ускорения точки M от времени [4] (рисунок 1).

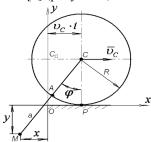


Рисунок 1 – Кинематическая схема

Аналитическое решение производят в тетрадях, но проверку своих расчетов студенты проводят в пакете MathCAD [3], что представлено на рисунке 2.

$$\begin{split} &\underset{R}{R} \coloneqq 0.4 \quad \text{Vc} \coloneqq \frac{\pi}{2} \quad a \coloneqq 0.2 \quad \text{MA} \coloneqq a \quad i \coloneqq 0...12 \quad t(i) \coloneqq 0.133 \cdot i \\ &\text{CCo}(t) \coloneqq \text{Vc-t}(i) \quad \text{OP}(t) \coloneqq \text{Vc-t}(i) \quad \text{AP}(t) \coloneqq \text{Vc-t}(i) \quad \phi(t) \coloneqq \frac{\text{Vc-t}(i)}{R} \\ &\text{x}(i) \coloneqq \text{Vc-t}(i) - (R+a) \cdot \sin \left(\frac{\text{Vc-t}(i)}{R}\right) \quad y(i) \coloneqq R - (R+a) \cdot \cos \left(\frac{\text{Vc-t}(i)}{R}\right) \\ &\text{Vx}(i) \coloneqq \text{Vc} \cdot \left[1 - \frac{(R+a) \cdot \cos \left(\frac{\text{Vc-t}(i)}{R}\right)}{R}\right] \quad \text{Vy}(i) \coloneqq \text{Vc} \cdot \left[\frac{(R+a) \cdot \sin \left(\frac{\text{Vc-t}(i)}{R}\right)}{R}\right] \\ &\underset{\text{W}}{\text{Vy}(i)} \coloneqq \sqrt{\text{Vx}(i)^2 + \text{Vy}(i)^2} \\ &\text{ax}(i) \coloneqq \text{Vc}^2 \cdot \frac{(R+a) \cdot \sin \left(\frac{\text{Vc-t}(i)}{R}\right)}{R^2} \quad \text{ay}(i) \coloneqq \text{Vc}^2 \cdot \frac{(R+a) \cdot \cos \left(\frac{\text{Vc-t}(i)}{R}\right)}{R^2} \\ &\underset{\text{AC}}{\text{ag}(i)} \coloneqq \sqrt{\text{ax}(i)^2 + \text{ay}(i)^2} \\ &\text{at}(i) \coloneqq \frac{\text{Vx}(i) \cdot \text{ax}(i) + \text{Vy}(i) \cdot \text{ay}(i)}{\text{V}(i)} \\ &\text{an}(i) \coloneqq \frac{\text{V}(i)^2}{\text{an}(i)} \quad \tau \coloneqq \frac{2\pi \cdot R}{\text{Vc}} \end{split}$$

Рисунок 2 – Фрагмент решения задачи в среде MathCAD

Конечные результаты представленной задачи, а именно скорость, касательное, нормальное и полное ускорение точки M, радиус кривизны траектории, приведены на рисунке 3.

t(i) =	x(i) =	y(i) =	Vx(i) =	Vy(i) =	V(i) =	ax(i) =	ay(i) =	a(i) =	$a\tau(i) =$	an(i) =	p(i) =
0	0	-0.2	-0.785	0	0.785	0	9.253	9.253	0	9.253	0.067
0.133	-0.09	-0.12	-0.471	1.175	1.266	4.616	8.019	9.253	5.725	7.269	0.221
0.266	-0.101	0.099	0.387	2.037	2.074	8.001	4.647	9.253	6.06	6.992	0.615
0.399	0.027	0.398	1.562	2.356	2.827	9.253	0.036	9.253	5.142	7.693	1.039
0.532	0.314	0.697	2.738	2.047	3.419	8.037	-4.584	9.253	3.693	8.484	1.378
0.665	0.741	0.918	3.604	1.191	3.795	4.679	-7.983	9.253	1.936	9.048	1.592
0.798	1.249	1	3.927	0.019	3.927	0.073	-9.252	9.253	0.029	9.253	1.667
0.931	1.758	0.922	3.622	-1.159	3.803	-4.553	-8.055	9.253	-1.88	9.06	1.596
1.064	2.188	0.705	2.77	-2.028	3.433	-7.964	-4.71	9.253	-3.644	8.505	1.386
1.197	2.48	0.407	1.599	-2.356	2.847	-9.252	-0.109	9.253	-5.104	7.717	1.05
1.33	2.613	0.107	0.42	-2.056	2.098	-8.073	4.521	9.253	-6.044	7.006	0.628
1.463	2.606	-0.115	-0.453	-1.207	1.289	-4.741	7.946	9.253	-5.776	7.228	0.23
1.596	2.516	-0.2	-0.785	-0.037	0.786	-0.145	9.252	9.253	-0.29	9.248	0.067

Рисунок 3 — Кинематические характеристики точки M

По результатам вычислений построена траектория и графики изменения скорости и ускорения точки M (рисунок 4).

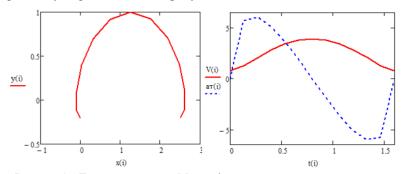


Рисунок 4 – Траектория точки *М* и графики скорости и полного ускорения в среде MathCAD

Таким образом, поставленная задача выполнена. Студенты получили более глубокие знания в рамках выбранного направления подготовки: исследовали кинематику точки, а именно — установили математический способ задания (описания) движения точки, определили закон движения точки и кинематические характеристики этого движения, усилили навыки работы на MathCAD. Продемонстрированная практика обработки кинематической задачи в программе MathCAD позволяет реализовать требования выполнения общепрофессиональных компетенций ОПК-1 и ОПК-4 ФГОС ВО по направлению подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» [5].

Список литературы

- 1 **Арсланбекова, С. А.** Использование прикладных программ как составляющая цифровизации образования / С. А. Арсланбекова, Ф. Н. Галлямов, Э. Ф. Мурзина // Конструирование стратегических приоритетов развития образования как ответ на вызовы третьего тысячелетия : материалы III Всерос. науч.-практ. конф. Уфа, 2022. С. 330–334.
- 2 Дик, Е. Н. Реализация прикладных задач в программе МАТНСАD в процессе обучения математике в высшей школе / Е. Н. Дик // Преподавание математики в высшей школе и работа с одаренными студентами в современных условиях : материалы Междунар. науч.-практ. семинара / ред. М. Е. Лустенков (гл. ред.) [и др.]. Могилев. 2022. С. 79–82.
- 3 Дик, Е. Н. Соотношение энергетики биологически активных точек и интеллекта в системе индивидуальности : дис. ... канд. психол. наук : 19.00.02 / Е. Н. Дик // БГАУ. Уфа, 1999. 150 с.
- 4 **Нафиков, М. 3.** Теоретическая механика. Раздел кинематика. Конспект лекций [Электронный ресурс]: учеб. пособие по направлениям подготовки бакалавра: 110800 Агроинженерия, 140100 Теплотехника и теплоэнергетика / М. 3. Нафиков. Уфа: Башкирский ГАУ, 2012. 67 с. Режим доступа: http://megaobuchalka.ru/5/34401.html. Дата доступа: 17.01.2023.
- 5 Об утверждении федерального образовательного стандарта высшего образования бакалавриат по направлению подготовки 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов» : приказ М-ва науки и высшего образования РФ от 07 августа 2020 г. № 916.

УДК 656.072.6

АКТУАЛИЗАЦИЯ СУЩЕСТВУЮЩИХ СТАНДАРТОВ В СФЕРЕ ТРАНСПОРТНОГО ОБСЛУЖИВАНИЯ НАСЕЛЕНИЯ ОБЩЕСТВЕННЫМ ТРАНСПОРТОМ

К. В. СИНЮТИЧ

Белорусский национальный технический университет, г. Минск

Управление системой перевозок пассажиров общественным транспортом в регулярном сообщении невозможно без определения правил, нормативов, минимального набора параметров, стандартов функционирования системы, при анализе которых можно сделать вывод о работе общественного транспорта. В РБ параметры и аспекты функционирования организаций общественного транспорта регламентированы такими нормативными правовыми актами, как Законы, Кодексы, Постановления Совета министров, государственными стандартами (СТБ, ГОСТ), решениями местных исполнительных комитетов.