Экспресс-3 является единственной системой по управлению пассажирскими перевозками на Белорусской железной дороге, в которой содержится как оперативная, так и аналитическая информация. Большинство функциональных задач, решаемых в Экспресс, относятся к среднесрочному и долосрочному планированию. За исключением основной подсистемы БКО. Для них неработоспособность подсистемы ность системы в течение нескольких часов не является критичной. Неработоспособность подсистемы БКО влечет за собой прекращение функций по бронированию и продаже билетов и, как следствие, снижение величины доходов от пассажирских перевозок. При этом в виду наличия отложенного спроса снижение доходов возникает только в части продажи определенной доли билетов на поезда, которые отправляются в период неработоспособности системы.

При оценке рисков и связанных с ними величин дополнительных затрат принимается, что системы дорожного уровня находятся в неработоспособном состоянии в течение от 1 до 24 часов. Больший период нахождения систем дорожного уровня в неработоспособном состоянии представляется маловероятным (за исключением случаев природных и техногенных катастроф. В таких случаях возникает ущерб непосредственно от самих катастроф, а дополнительные затраты от неработоспособности информационных систем дорожного уровня будут опосредованными.

Разработана методика оценки рисков и дополнительных затрат в системе организации перевозочного процесса на железной дороге при возникновении сбоев в ИАС ПУР ГП и Экспресс-3.

Выполненные на основании разработанной методики расчеты показали, что дополнительные затраты от сбоев ИАС ПУР ГП в системе грузовых перевозок составляют от 13800 у.е. при продолжительности сбоя 1 час до 428400 у.е. при 24 часовом сбое. Дополнительные затраты в системе пассажирских перевозок от сбоев Экспресс-3 изменяется от 2500 до 4800 у.е.

При расчетах учтены только непосредственные затраты, связанный со сбоями в системах ИАС ПУР ГП и Экспресс-3. Кроме них могут возникнуть значительные опосредованные затраты, которые проявляются в виде риска снижения доходов от перевозок при утрате (уменьшении) доверия к Белорусской железной дороге как надежному перевозчику.

В отдельных случаях возможен ущерб, связанный с ненадлежащим качеством оказания услуг пассажирам (судебные издержки и последующие выплаты компенсаций пассажирам).

Продолжительные сбои могут вызывать и социальный ущерб, а также экономический ущерб в других отраслях промышленности.

Разработаны рекомендации по снижению величин рисков и дополнительных затрат при сбоях в системах дорожного уровня. К ним относятся:

- 1 Создание полноценных резервов программно-аппаратных комплексов ИАС ПУР ГП и Экспресс-3, в том числе создание «горячего» и «холодного» резервов.
- 2 Внедрение мероприятий по уменьшению времени восстановления программно-технических комплексов.
- 3 Резервирование каналов связи между вычислительным центром и основными пользователями, в первую очередь ЦУП.
- 4 Разработка технологий работы линейных предприятий в условиях отсутствия связи с ИРЦ дороги. В перспективе с развитием систем ИАС ПУР ГП и Экспресс-3, ростом уровня информатизации процессов управления, величины рисков и дополнительных затрат будут возрастать. В связи с этим внедрение каждой информационной технологии должно предусматривать раздел: порядок работы в условиях сбоев.

УДК 656.2.05

ПАРАМЕТИЧЕСКАЯ ОЦЕНКА СТРУКТУРЫ УПРАВЛЕНИЯ ПЕРЕВОЗОЧНЫМ ПРОЦЕССОМ НА БЕЛОРУССКОЙ ЖЕЛЕЗНОЙ ДОРОГЕ

А. А. ЕРОФЕЕВ

Белорусский государственный университет транспорта, г. Гомель

Изменение структуры управления железной дороги может производиться по вертикали – поиск оптимальной системы иерархии управления на железнодорожном транспорте; реструктуризация по

горизонтали — поиск оптимальных размеров объектов управления или одновременно реструктуризация и поиск рациональных структур транспорта по вертикали и горизонтали. Определяя Белорусскую железную дорогу как составную часть транспортной системы государства, необходимо учитывать, что деятельность железнодорожного транспорта как системы в рамках экономики государства регламентирована и административно определена. В то же время Белорусская железная дорога как транспортная система конвергируется в международную систему «рынок сбыта (производство)» — «рынок потребления», прежде всего, функционально. Изменение структур управления должно обеспечивать совершенствование по общему критерию всех составляющих системы «производство — транспорт — потребление» в целом.

Задача создания эффективной и современной системы управления перевозками может быть реализована на основе теории управления и теории логистических цепей. Такая система обеспечивает функциональное единство всех модулей, объединяемых в единую структуру узла $m_i \in M$ и их функциональное единство всех модулей, объединяемых в единую структуру узла $m_i \in M$ и их функциональное единство всех модулей, объединяемых в единую структуру узла $m_i \in M$ и их функциональное единство всех модулей, объединяемых в единую структуру узла $m_i \in M$ и их функциональное единство всех модулей, объединяемых в единую структуру узла $m_i \in M$ и их функциональное единство всех модулей (править в править в прави

ций $\phi_i \in \Phi$ реализуя поставленную задачу.

Критериями оценки системы управления (оптимизации функционирования) при совершенствовании эксплуатационной работы транспортных объектов являются координируемость, связность, заданный уровень управляемости и устойчивости работы, надежность выполнения технологических процессов.

Система управления перевозочным процессом должна идентифицировать транспортные потоки в сети, обеспечить их пропуск и переработку по требуемым параметрам. Кроме того, система управления должна обеспечивать устойчивость работы всех объектов железной дороги и выполнение заданных количественных и качественных показателей.

Повышение качества управления реализуется за счет *координируемости* объектов управления применительно к каждой транспортной цепи, которая задается величинами — ϕ_i , x_i , y_i , представляющими вектор

$$z_{i}(t) = \begin{cases} \phi_{i}(t) \\ x_{i}(t) \\ y_{i}(t) \end{cases}, \tag{1}$$

где $z_i(t)$ — управляющий вектор воздействий на перевозочный процесс в транспортной сети, сформированный на информационном поле — $u_1, u_2, \dots u_n$ где n — число элементов координации транспортной сети; $\phi_i(t)$ — заданная функция на текущий момент времени $t_i, x_i(t)$ — параметрическая оценка состояния объектов на текущий на момент времени t_i ; $y_i(t)$ — заданная величина параметров на конец периода управления.

Связность S_{ny} скоординированной структуры управления перевозками определяется как сумма связей между управляющими и исполнительными объектами, включенных в централизованную систему оперативного управления. Количественно связность системы управления может быть выражена матрицами $\|a_{ij}\|$, соединяя в одно информационное поле процессы поездной и грузовой работы.

Устойчивость системы оперативного управления определяется как способность управляющей системы поддерживать в логистических цепях перевозочного процесса и их модулях режимы функционирования, обеспечивающие выполнение нормативных параметров в заданных границах. Свойство управляемости состоит в возможности системы управления перевозками воздействовать на перевозочный процесс для достижения установленных в планах целей. Если управляющие переменные не оказывают необходимого влияния на ход перевозочного процесса на железной дороге, то такое управление не эффективно. В этом случае управляемый процесс не реагирует необходимым образом на управляющие воздействия.

По заказу Белорусской железной дороги в БелГУТе были проведены исследования с целью оценки свойств функционально-иерархического построения существующей системы управления и разработки более эффективных структур. Разработаны четыре варианта реструктуризации системы управления перевозочным процессом и определена этапность их реализации. При их реализации уровень централизации управления перевозочным процессом δ повышается с 0,47 до 0,75. Неравномерность распределения связей ϵ^2 снижается с 7,19 до 4,17, структурная компактность достигает рационального значения $S_k = 0,5$, а структурная избыточность снижается на 35 %.

В результате анализа параметров структуры управления перевозочным процессом установлено, что для повышения качества управления перевозочным процессом необходимо руководствоваться следующими положениями.

1 Построение системы управления перевозками должно основываться на реструктуризации функций управления по видам транспортной деятельности и интеграции их с учетом общих задач перевозочного процесса.

2 Повышение устойчивости функционирования системы управления перевозками должно дости-

гаться за счет поддержания управляющих и фазовых переменных в нормативных границах.

3 Управлении перевозочным процессом должно основываться на использовании современных технических средств съема и обработки информации, а система управления перевозками должна обеспечивать непрерывный контроль за ходом перевозочного процесса

Результаты исследования использованы при разработке технико-экономического обоснования развития Центра управления перевозками Белорусской железной дороги.

УДК 656.225.073.235

ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ЖЕЛЕЗНОДОРОЖНЫХ КОНТРЕЙЛЕРНЫХ ПЕРЕВОЗОК

Т. А. ЗАЙЦЕВ, М. В. КИЗИМИРОВ, И. В. СЕРЯПОВА Московский государственный университет путей сообщения, Самарский государственный университет путей сообщения, Российская Федерация

Контрейлерные перевозки - явление не массовое, но есть векторы, на направлении которых они могут серьезно потеснить устоявшихся игроков рынка грузовых перевозок. Основные факторы, которые влияют на спрос на рынке транспортных услуг, - это динамика международного и внутреннего товарообмена, потребность в оптимизации расходов перевозки, усложнение схем доставки. Снижение торговых барьеров, которое наблюдается по всему миру в последнее время, и динамичное развитие стран Азиатско-Тихоокеанского региона – стали большим стимулом развития транспортно-логи-

Оживление рынка грузоперевозок, начавшееся сравнительно недавно, после кризиса 2008 года, демонстрирует довольно радужные перспективы. Подъем рынка связан, прежде всего, с грамотной ценовой политикой, и в частности, незначительным темпом повышения тарифов на услуги, а также подъемом в традиционных отраслях пользователях услугами рынка грузовых перевозок (промышленность, добывающая промышленность, машиностроение). И хотя основным игроком на этом рынке остается автомобильный транспорт, в ближайшее время он столкнется с рядом проблем:

- возраст большинства автомобилей составляет более 10 лет, это требует постоянных затрат на содержание, что ведет к снижению прибыли и возрастанию себестоимости перевозок. Это не может отразится на уровне тарифов;
- серьезный урон, который нанес кризис 2008 года по рынку лизинговых услуг, за счет которого шло обновление парка грузового автотранспорта, не позволяет говорить о масштабном обновлении
- постоянно увеличивающиеся цены на рынке энергоносителей не позволяют говорить о возможном снижении цен на предоставляемые услуги на этом рынке;
- состояние транспортной инфраструктуры оставляет желать лучшего. Нет постоянного обновления и расширения ее. При том, что автомобильный транспорт развивается угрожающими темпами, это касается и легкового транспорта. А дорожная сеть, построенная в прошлом веке, не рассчитана на такое количество автомобильного транспорта. К этому можно добавить, что 90 % всех дорог России являются однополосными (по одной в каждом направлении);
 - отсутствие придорожного сервиса;
 - постоянное повышение налогов на большегрузный транспорт.