В работе определены температурные зависимости коэффициента термического линейного расширения АБС- и АБС/ПММА-пластиков трех производителей после ускоренных лабораторных климатических испытаний, эквивалентных 10 годам эксплуатации. Выполнено сопоставление полученных характеристик с аналогичными показателями до климатических испытаний. Дана оценка стабильности КТЛР изучаемых пластиков при воздействии температуры, влаги и ультрафиолета. Практическая значимость результатов состоит в оптимальном выборе конструкционных пластиков для деталей кузова транспортных и сельскохозяйственных машин по критерию стабильности свойств в условиях климатического воздействия.

Список литературы

- 1 **Гуль, В. Е.** Структура и механические свойства полимеров / В. Е. Гуль, В. Н. Кулезнев. -4-е изд., перераб. и доп. М.: Лабиринт, 1994. 367 с.
- 2 **Шах, В.** Справочное руководство по испытаниям пластмасс и анализу причин их разрушения / В. Шах ; пер. с англ. под ред. А. Я. Малкина. СПб. : Научные основы и технологии, 2009. 732 с.

УДК 669.018.472:678.5

РАСЧЕТ ПАРАМЕТРОВ ТЕПЛОПЕРЕДАЧИ МЕТАЛЛ-АЛМАЗНЫХ КОМПОЗИТОВ КАК ФАКТОРА НАДЕЖНОСТИ ЭЛЕКТРОННЫХ ПРИБОРОВ

С. В. ШИЛЬКО

Институт механики металлополимерных систем им. В. А. Белого Национальной академии наук Беларуси, г. Гомель

А. И. СТОЛЯРОВ

Гомельский государственный университет им. П. О. Сухого, Республика Беларусь

В последние годы важным фактором безопасности во многих сферах жизнедеятельности стала надежность силовой электроники, средств мобильной радиосвязи, микропроцессоров и т. д., что обусловлено широким распространением и миниатюризацией электронных приборов, повышением их удельной мощности и, соответственно, тепловыделения. Применение материалов с повышенной теплопроводностью часто остается единственным способом эффективного охлаждения перечисленных устройств. Теплопроводность обычно используемых металлов (меди, алюминия и их сплавов) уже недостаточна; к тому же они имеют довольно высокий коэффициент теплового расширения. Инновационным решением считается создание металл-алмазных композитов (МАК) благодаря их высокой теплопроводности и возможности регулирования КТР. Сочетание свойств металлической матрицы (хорошая теплопроводность, пластичность) и мелкодисперсного наполнителя в виде алмаза (максимальная теплопроводность и твердость, химическая стабильность) в принципе позволяет достичь желаемого результата. Однако из-за несовершенного контакта частиц наполнителя и металлической матрицы, обусловленного низкой смачиваемостью поверхности алмаза медью и алюминием, фактическая теплопроводность и термопрочность МАК может оказаться ниже, чем у матричного металла. Это преодолевается плакированием алмазов карбидами металлов при условии оптимального выбора объемного содержания частиц, толщины межфазного слоя и т. д. Однако необходимая для оптимизации диагностика температур, напряжений и локальных термомеханических повреждений МАК затрудняется микроскопическими размерами частиц наполнителя и наноразмерностью межфазного слоя.

Обзор проведенных исследований показывает, что численное моделирование позволяет дать полезные рекомендации в части дизайна структуры МАК, направленного на повышение теплопроводности и термопрочности. Так, авторы статьи [1], изучавшие влияние формы частиц алмаза на теплопроводность МАК экспериментально и методом конечных элементов, сделали вывод, что при прочих равных условиях большее количество граней может способствовать повышению теплопроводности.

Цель работы — расчет коэффициента теплопроводности металл-алмазных композитов и распределения температуры в представительном объеме МАК исходя из теплофизических характеристик всех компонентов с представлением частиц наполнителя в виде многогранников.

Для численного моделирования процесса теплопередачи в композите «алмаз – алюминий» использовался конечноэлементный программный продукт ANSYS версии 19.0. Параметрический анализ заключался в определении величины теплового потока, коэффициента теплопроводности и распределения температуры с учетом термосопротивления границы раздела для различной толщины модифицирующего покрытия из карбида вольфрама.

На рисунке 1, *а* показана трехмерная модель представительного объема МАК регулярной структуры, содержащего матрицу в виде куба с длиной ребра 0,422 мкм и 27 сферических включений диаметром 200 мкм (три ряда по девять частиц в каждом ряду) с модифицирующим покрытием, толщина которого варьировалась от 0 до 1 мкм. На двух противоположных гранях куба задавались значения температуры, остальные грани считались теплоизолированными. Коэффициенты теплопроводности материала матрицы, наполнителя и межфазного слоя задавались равными 1800, 237 и 178 Вт/(м·К) соответственно.

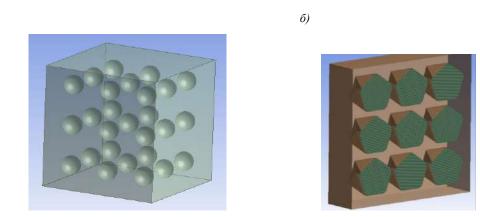


Рисунок 1 – Модельная структура МАК с частицами алмаза в виде сфер (a) и многогранников (b)

В таблице 1 сопоставлены расчеты методом конечных элементов и по зависимостям, полученным в рамках модели Такаянаги, гипотез составного включения и эквивалентной матрицы [2].

a)

Толщина слоя, нм	100	250	500	1000
Тепловой поток, MB_T/M^2	Нет сходимости	12,40	12,46	12,82
Коэффициент теплопроводности, Вт/(м·К)	-	313,94	315,53	324,70
Аналитическое решение	313,82	313,44	312,82	311,57

Можно отметить достаточно хорошее совпадение аналитических и конечно-элементных оценок, однако для очень тонких покрытий (толщиной 0,1 мкм и менее) решение методом конечных элементов получить не удалось, а с увеличением толщины покрытия расхождение увеличивается.

При достаточных вычислительных ресурсах конечно-элементная дискретизация позволяет получить детальное трехмерное описание теплопередачи и термонапряженного состояния представительного объема МАК, содержащего группу частиц наполнителя (алмаза) в виде многогранников произвольной формы. В этом случае возможно использование микротомограмм металл-алмазных композитов в качестве исходных данных для конечно-элементного расчета. На рисунке 1, δ показан представительный объем МАК в виде куба размером $1\times1\times1$ мм, содержащего 27 включений в виде правильных многогранников (икосаэдров) размером 250–260 мкм, которые имеют 20 треугольных граней каждый. В предположении идеального контакта «алюминий – алмаз» расчетная теплопроводность композита составила 555,42 Вт/(м·К).

Построена трехмерная конечно-элементная модель процесса теплопередачи в представительном объеме металл-алмазного композита при наличии модифицирующего покрытия на частицах алмаза. На примере композита «алмаз/алюминий» с покрытием из вольфрама определены значения

теплового потока и коэффициента теплопроводности композита с включениями в виде сфер и многогранников с учетом термосопротивления границы раздела для различной толщины покрытия из вольфрама. Сделано сопоставление указанных параметров с расчетом по формулам, полученным в рамках микромеханической модели Такаянаги, гипотезы составного включения и эквивалентной матрицы, показавшее достаточно хорошее совпадение аналитических и конечноэлементных оценок.

Исследование поддержано БРФФИ (T22KИ-032 «Эволюция микроструктуры и стабильность термических свойств композитов алмаз/алюминий при термоциклировании)».

Список литературы

- 1 Finite Element Analysis of the Effect of Particle Shape on the Thermal Conductivity in Diamond/Cu Composites / H. Guo [et al.] // Materials Science Forum. 2014. Vol. 788. P. 689–692. DOI: 10.4028/ www.scientific.net/msf.788.689.
- 2 **Шилько, С. В.** Математическое моделирование процесса теплопередачи и термонапряженного состояния в металло-алмазных композитах / С. В. Шилько, Д. А. Черноус // Математическое моделирование и биомеханика в современном университетете : тез. докл. XVI Всерос. школы (Дивноморское, 26 31 мая 2022 г.). Ростов-н/Д; Таганрог : ЮФУ, 2022. С. 102.

УДК 51+004

РЕАЛИЗАЦИЯ НЕКОТОРЫХ АЛГОРИТМОВ ШИФРОВАНИЯ В WOLFRAM MATHEMATICA

О. В. ЮХНОВСКАЯ, М. А. ГУНДИНА

Белорусский национальный технический университет, г. Минск

Проблема сохранности данных не утрачивает своей актуальности. Методы криптографической защиты находят свое применение в системах управления на транспорте. Суть шифрования заключается в следующем. Вначале происходит переход данных через серию математических операций, которые генерируют альтернативную форму этих данных, затем получатель преобразует эту форму в исходную.

Безопасность шифрования заключается в способности алгоритма генерировать зашифрованный текст, который нелегко преобразовать в исходный. Криптографическая функция в основном зависит от значения ключа, необходимого как для шифрования, так и для дешифрования.

Двумя широко используемыми методами шифрования являются шифрование с симметричным ключом и шифрование с открытым ключом. При шифровании с симметричным ключом и отправитель, и получатель используют один и тот же ключ, необходимый для шифрования данных [1]. На сегодняшний день разработаны различные алгоритмы для описания криптографии с симметричным ключом, такие как AES, DES, 3DES, Blowfish и др. Недостатком таких методов является низкий уровень безопасности, поскольку отправитель и получатель используют один и тот же ключ (закрытый) через незащищенные каналы [2]. Это может привести к легкому обнаружению ключей шифрования и дешифрования.

Криптография с асимметричным ключом известна как криптография с открытым ключом. В шифровании с открытым ключом используются два разных, но математически связанных ключа. Существуют различные алгоритмы для реализации этого механизма шифрования: RSA, Diffie-Hellman, ECC (криптография на эллиптических кривых) и алгоритм цифровой подписи [3].

Шифрование на основе RSA с большим модулем и, соответственно, большим ключом, позволяет также надежно сохранять данные.

Рассмотрим реализацию алгоритма шифрования в системе Wolfram Mathematica.

Вначале подключаем кодировщик данных с помощью следующей команды:

enc=NetEncoder["UTF8"].

Вывод набора первых последовательных простых чисел может быть получен с помощью следующей команды:

Table[Prime[n],{n,20}].

Выбираем два простых числа из списка: p = 59, q = 61. Находим их произведение max = pq. Вычисляем функцию Эйлера $f_1 = (p-1)(q-1)$. В этом случае ее значение для данных чисел равно 3480.