УДАР АБСОЛЮТНО ТВЕРДОГО ТЕЛА ПО ПЛАСТИНЕ ТИПА ТИМОШЕНКО

Е. Ю. МИХАЙЛОВА

Московский авиационный институт (НИУ), Российская Федерация

Г. В. ФЕДОТЕНКОВ

Московский авиационный институт (НИУ),

НИИ механики МГУ им. М. В. Ломоносова, г. Москва, Российская Федерация

Задачи механики контактных взаимодействий являются одними из основных проблем, подлежащих решению на этапах проектирования и создания самых различных объектов современной техники. Удар может вызвать местные микроразрушения, приводящие к нежелательным последствиям: развитию трещин, коррозионному разрушению. Поэтому исследования данных контактных взаимодействий являются особенно актуальными и важными для авиационной, космической, судостроительной области, а также других отраслей промышленности.

Работа посвящена исследованию нестационарной контактной задачи с подвижной областью взаимодействия об ударе абсолютно твердого тела (ударника) по пластине типа Тимошенко (основание). Контакт между ударником и основанием реализуется в условиях свободного проскальзывания. Вектор начальной скорости, с которой движется абсолютно твердое тело, совпадает с направлением оси z и ортогонален невозмущённой поверхности основания.

Полагаем, что материал пластины упругий и изотропный, с плотностью ρ и параметрами Ламе λ , μ . Введем систему безразмерных величин

$$x' = \frac{x}{L}, \ z' = \frac{z}{L}, \ l' = \frac{l}{L}, \delta' = \frac{\delta}{L}, \ h' = \frac{h}{L}, \tau = \frac{c_1 t}{L}, \ w' = \frac{w}{L}, \ p' = \frac{pL}{\delta \rho c_1^2},$$

$$\beta^2 = \frac{12k^2L^2}{\delta^2}, \ \gamma^2 = \frac{c_2^2}{c_1^2}, \ \tilde{\gamma}^2 = k^2 \gamma^2, \ \alpha^2 = \frac{1}{c_1^2} \frac{\lambda + \mu}{\rho}, \ b' = \frac{b}{L}, \ R' = \frac{R}{\delta \rho c_1^2}, \ m' = \frac{m}{\delta L \rho},$$
(1)

где t — время; h — глубина погружения ударника; l — расстояние от центра масс до лобовой точки тела; δ — толщина пластины; L — некоторый линейный размер; m — масса ударника; R — погонная контактная сила; b — радиус границы области контакта; p — контактное давление; w, c_1 и c_2 — нормальные перемещения (вдоль оси z), скорости распространения волн растяжения-сжатия и сдвига в основании. В дальнейшем везде штрих в обозначении безразмерных величин опускаем.

В постановку задачи входят:

- уравнение движения ударника

$$m\ddot{h}(\tau) = R(\tau), R(\tau) = \int_{-b(\tau)}^{b(\tau)} p dx;$$
 (2)

- соотношение для определения радиуса пятна контакта

$$b(\tau) = f^{-1}(l-h); \tag{3}$$

– уравнения движения основания [3, 4]

$$\frac{\partial^2 w}{\partial \tau^2} = \tilde{\gamma}^2 \left(\frac{\partial \chi}{\partial x} + \frac{\partial^2 w}{\partial x^2} \right) + p,$$

$$\frac{\partial^2 \chi}{\partial \tau^2} = \alpha^2 \frac{\partial^2 \chi}{\partial x^2} + \gamma^2 \left(\frac{\partial^2 \chi}{\partial x^2} - \beta^2 \left[\chi + \frac{\partial w}{\partial x} \right] \right),$$
(4)

где χ – компоненты вектора углов отклонения ортогонального к срединной плоскости материального волокна пластины

граничные условия

$$w(\tau, x) = f(x) + h(\tau) - l, \quad |x| \le b(\tau), \tag{5}$$

где f(x) – функция, задающая форму границы абсолютно твердого тела;

- начальные условия

$$h\Big|_{\tau=0} = 0, \ \dot{h}\Big|_{\tau=0} = V_0.$$
 (6)

Основное разрешающее уравнение, опирающееся на принцип суперпозиции, имеет вид

$$w(\tau,x) = G(\tau,x) **p(\tau,x) = \int_{0-b(\tau)}^{\tau} \int_{0-b(\tau)}^{b(\tau)} G(\tau-t,x-\xi) p(\tau,\xi) d\xi dt, \tag{7}$$

где $G(\tau,x)$ — функция влияния для основания, которая представляет собой нормальные перемещения и является решением краевой задачи с однородными начальными условиями и мгновенным нормальным давлением $p = \delta(\tau)\delta(x)$, заданным на поверхности пластины. Для нахождения функции Грина к системе уравнений (4) применяется интегральное преобразование Лапласа [6, 7] по времени τ и Фурье [5, 7] по координате x. В результате получаем изображение $G^{FL}(q,s)$. Находим оригинал функции влияния для пластины $G(\tau,x)$. Используем вторую теорему разложения для преобразования Лапласа [6], а также метод, основанный на связи интеграла обращения преобразования Фурье с рядом Фурье на переменном интервале, и дающий хорошие результаты в случае, когда уравнения имеют гиперболический тип (4).

Итак, помимо формулы (7) система разрешающих уравнений включает в себя следующие равенства [1, 2]:

$$w(\tau, x) = f(x) + h(\tau) - l, \ h(\tau) = \int_{0}^{\tau} V(t) dt, \ b(\tau) = f^{-1}(l - h(\tau)),$$

$$mV(\tau) = \int_{0}^{\tau} R(t) dt, \ R(\tau) = \int_{-b(\tau)}^{b(\tau)} p dx.$$
(8)

Замыкают формулы (8) начальные условия (6).

Для системы (8) строится дискретный аналог. На пространственно-временную область наносится сетка с постоянным шагом по времени и по координате. Искомым функциям ставятся в соответствие сеточные функции. В численно-аналитическом алгоритме, основанном на методе квадратур, используется явная схема интегрирования.

В результате решения задачи получены графики зависимостей глубины, скорости погружения ударника, радиуса и скорости расширения области контакта от времени; контактного давления и нормальных перемещений от времени и координаты. Построены графики функции Грина $G(\tau, x)$ в зависимости от координаты x в фиксированные моменты времени. Также проведен параметрический анализ контактного взаимодействия абсолютно твердого тела и пластины при различных типах материалов основания. В качестве ударника рассмотрены круговой, эллиптический, параболический и гиперболический цилиндры.

Работа выполнена при финансовой поддержке РФФИ (проект 20-08-01099 А).

Список литературы

- 1 **Mikhailova, E. Yu.** The unsteady contact interaction problem of an absolutely rigid body and a membrane / E. Yu. Mikhailova, G.V. Fedotenkov, D.V. Tarlakovskii // Theoretical, Applied and Experimental Mechanics: Proceedings of the Second International Conference. 2019. P. 289–293.
- 2 **Горшков, А. Г.** Динамические контактные задачи с подвижными границами / А. Г. Горшков, Д. В. Тарлаковский. М.: Наука. Физматлит, 1995. 352 с.
- 3 **Михайлова, Е. Ю.** Упругие пластины и пологие оболочки : учеб. пособие / Е. Ю. Михайлова, Д. В. Тарлаковский, Г. В. Федотенков. М. : Изд-во МАИ, 2018. 92 с.
- 4 Вахтерова, Я. А. Нестационарная динамика балок и пластин : учеб. пособие / Я. А. Вахтерова, Д. О. Сердюк, Γ . В. Федотенков. М. : Изд-во МАИ, 2021. 104 с.
 - 5 Снеддон, И. Преобразования Фурье / И. Снеддон. М. : ИЛ, 1955. 669 с.
- 6 Д**ёч, Г.** Руководство к практическому применению преобразования Лапласа и Z-преобразования / Г. Дёч. М.: Наука, 1971. 288 с.
 - 7 Волны в сплошных средах: учеб. пособие для вузов / А. Г. Горшков [и др.]. М.: Физматлит, 2004. 472 с.