Формирование математической модели для оценки динамики временных рядов вагонопотоков, обрабатываемых на стыковых пунктах железных дорог, и прогнозирование изменения их значений невозможны без определения класса рядов. В ходе проведения статистической проверки гипотез о случайности временных рядов вагонопотоков, поступающих по пунктам стыкования дорог полигона, было определено, что данные временные ряды являются нестационарными и содержат стохастический тренд, который удаляется поэтапным дифференцированием временного ряда. Результаты исследования будут использованы для дальнейшего построения модели прогноза поступления вагонопотоков по пунктам стыкования железных дорог РФ.

Список литературы

1 Изменение работы тягового подвижного состава на участках железных дорог Восточного полигона / А. А. Власенский [и др.] // Современные технологии. Системный анализ. Моделирование. – 2021. – № 2 (70). – С. 154–161. – DOI: 10.26731/1813-9108.2021.2(70).154-161.

2 Козловский, А. П. Влияние изменения технологии управления тяговыми ресурсами Восточного полигона на эксплуатационную работу / А. П. Козловский, Г. И. Суханов, А. В. Супруновский // Современные технологии. Системный анализ. Моделирование. – 2019. – № 2 (62). – С. 234–241. – DOI: 10.26731/1813-9108.2019.2(62).234-241.

3 Моделирование крупнейшей в мире железнодорожной сортировочной станции с использованием теории массового обслуживания / М. Л. Жарков [и др.] // Вестник Уральского государственного университета путей сообщения. – 2021. – № 3 (51). – С. 4–14. – DOI: 10.20291/2079-0392-2021-3-4-14.

4 Супруновский, А. В. К вопросу о построении имитационных моделей перевозочных процессов в программной среде ANYLOGIC / А. В. Супруновский, Р. С. Большаков // Т-Сотт: Телекоммуникации и транспорт. – 2022. – Т. 16, № 3. – С. 31–35. – DOI: 10.36724/2072-8735-2022-16-3-31-35.

УДК 539.3

МЕХАНИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДЕФОРМИРОВАНИЯ ТРЁХСЛОЙНОЙ ПЛАСТИНЫ СТУПЕНЧАТО-ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ВОСПРИЯТИИ МНОГОКРАТНО-ПОВТОРНОЙ НАГРУЗКИ

М. В. МАРКОВА

Белорусский государственный университет транспорта, г. Гомель

Трёхслойный элемент конструкций обладает явными преимуществами над однослойным. Пакет из разнородных сопряжённых материалов позволяет достичь равной с однослойным элементом деформативности одновременно со значительным снижением общего веса конструкции. Кроме того, за счёт определённых физических характеристик материала, закладываемого в качестве связующего заполнителя, трёхслойный элемент дополнительно наделяется функционально требуемыми параметрами, такими как теплопроводность, звукопроницаемость, электропроводность и т. д.

На сегодняшний день исследованию работы трёхслойных пакетов под действующей внешней нагрузкой посвящена не одна тысяча публикаций, что обусловлено существованием различных подходов к моделированию деформирования таких элементов и методов расчёта поставленных задач. Метод улучшения работы трёхслойного элемента, основанный на локальном утолщении в наиболее напряжённых местах, предложен в работах [1–6]. Колебания гладких трехслойных пластин на упругом основании исследованы в [7]. Здесь будет описана пластина со ступенчатым изменением толщины наружных облицовочных слоёв и постоянной толщиной срединного заполнителя.

Пластина имеет круглую форму и рассматривается в цилиндрической системе координат r, φ , z. Толщина внешних слоёв задаётся с помощью кусочно-непрерывной функции Хевисайда [8]: $h_1(r) = h_{1(1)} + (h_{1(II)} - h_{1(I)}) \cdot H_0(r - R_1); h_2(r) = h_{2(I)} + (h_{2(II)} - h_{2(I)}) \cdot H_0(r - R_1),$ где I и II – нумерация участков различной толщины; R_1 – радиус центрального участка I. Толщина срединного заполнителя – $h_3 = 2c$, где c – расстояние от зоны склейки слоёв до срединной плоскости заполнителя, к которой привязана система координат. К пластине приложена внешняя нагрузка $q = q_{(I,II)}(r, t)$. В результате чего пластина деформируется, в ней возникает прогиб w(r, t), относительный сдвиг в заполнителе $\psi(r, t)$ и радиальное перемещение координатной поверхности u(r, t). Модель деформирования трёхслойного пакета принята в соответствии с гипотезой «ломаной линии»: для тонких внешних слоёв приняты гипотезы Кирхгофа [9], для относительно толстого срединного заполнителя – гипотеза Тимошенко [10]. Заполнитель считается несжимаемым. Относительное проскальзывание между слоями отсутствует.

На основе вариационного принципа Гамильтона [11] в работе [12] была получена система дифференциальных уравнений движения рассматриваемой пластины:

$$\Delta \Delta w_{(\mathrm{I},\mathrm{II})} + D_{(\mathrm{I},\mathrm{II})} m_{(\mathrm{I},\mathrm{II})} \Delta \ddot{w}_{(\mathrm{I},\mathrm{II})} + D_{(\mathrm{I},\mathrm{II})} M_{1(\mathrm{I},\mathrm{II})} \ddot{w}_{(\mathrm{I},\mathrm{II})} = D_{(\mathrm{I},\mathrm{II})} q_{(\mathrm{I},\mathrm{II})},$$

$$u_{(\mathrm{I},\mathrm{II})} = b_{1(\mathrm{I},\mathrm{II})} w_{(\mathrm{I},\mathrm{II})}, r + rC_{1(\mathrm{I},\mathrm{II})} + \frac{C_{2(\mathrm{I},\mathrm{II})}}{r} - \frac{m_{1(\mathrm{I},\mathrm{II})}}{r} \int r \ddot{w}_{(\mathrm{I},\mathrm{II})} dr,$$

$$\psi_{(\mathrm{I},\mathrm{II})} = b_{2(\mathrm{I},\mathrm{II})} w_{(\mathrm{I},\mathrm{II})}, r + rC_{3(\mathrm{I},\mathrm{II})} + \frac{C_{4(\mathrm{I},\mathrm{II})}}{r} - \frac{m_{2(\mathrm{I},\mathrm{II})}}{r} \int r \ddot{w}_{(\mathrm{I},\mathrm{II})} dr,$$
(1)

где Δ – оператор Лапласа; $D_{(i)}$, $m_{k(i)}$, $M_{1(i)}$, $b_{k(i)}$ – коэффициенты, зависящие от плотности, упругих свойств материалов и толщины слоёв на каждом *i*-м участке пластины с постоянной толщиной; $C_{k(i)}$ – константы интегрирования, определяемые из граничных условий в точках r = 0, $r = R_1$ и $r = R_2$.

Решение системы (1) было построено делением искомых перемещений на квазистатические (w_s, u_s, ψ_s) и динамические (w_d, u_d, ψ_d) составляющие [13]:

$$w_{(I,II)} = w_{s(I,II)} + w_{d(I,II)}, \quad u_{(I,II)} = u_{s(I,II)} + u_{d(I,II)}, \quad \Psi_{(I,II)} = \Psi_{s(I,II)} + \Psi_{d(I,II)}.$$

Внешняя многократно-повторная нагрузка, воспринимаемая пластиной, представляет собой ритмичную последовательность ударов равной интенсивности. Данную последовательность повторяющихся процессов можно представить в виде циклов, продолжительностью т, каждый из которых в свою очередь состоит из двух временны́х участков.

На первом временном участке к пластине приложена внешняя нагрузка q, действующая в течение времени $t = \tau_q$. Второй временной участок отсчитывается от момента снятия внешнего воздействия и представляет собой свободные колебания с начальными условиями, соответствующими вынужденным колебаниям предыдущего временного участка в момент времени $t = \tau_q$. С учётом представленного деления временной оси внешнего воздействия, общее решение для функции прогиба, возникающего в пластине, будет иметь вид:

$$\begin{split} w(r,t) &= w_{s}(r,t) + w_{d(1)}^{q}(r,t) + \left(w_{d(1)}^{0}\left(r,\left[t-\tau_{q}\right]\right) - w_{s}(r,t) - w_{d(1)}^{q}\left(r,t\right)\right) \cdot H_{0}\left(t-\tau_{q}\right) + \\ &+ \sum_{m=0}^{N-1} \left(\left[w_{s}\left(r,t\right) + w_{d(m+1)}^{q}\left(r,\left[t-m\tau\right]\right) + \left(w_{d(m+1)}^{0}\left(r,\left[t-m\tau-\tau_{q}\right]\right) - \\ &- w_{s}\left(r,t\right) - w_{d(m+1)}^{q}\left(r,\left[t-m\tau\right]\right)\right) \cdot H_{0}\left(t-m\tau-\tau_{q}\right) \right] - \\ &- \left[w_{s}\left(r,t\right) + w_{d(m)}^{q}\left(r,\left[t-(m-1)\tau\right]\right) + \left(w_{d(m)}^{0}\left(r,\left[t-(m-1)\tau-\tau_{q}\right]\right) - w_{s}\left(r,t\right) - \\ &- w_{d(m)}^{q}\left(r,\left[t-(m-1)\tau\right]\right)\right) \cdot H_{0}\left(t-(m-1)\tau-\tau_{q}\right) \right] \right) \cdot H_{0}\left(t-m\tau\right), \end{split}$$

где *т* – количество циклов ударного воздействия.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № T22M-072).

Список литературы

1 Деформирование ступенчатой композитной балки в температурном поле / Э. И. Старовойтов [и др.] // Инженернофизический журнал. – 2015. – Т. 88, № 4. – С. 987–993.

2 Nguyen, C. H. Enhanced static response of sandwich panels with honeycomb cores through the use of stepped facings / C. H. Nguyen, K. Chandrashekhara, V. Birman // Journal of sandwich structures & materials. – 2011. – No. 2 (13). – P. 237–260.

3 Lal, R. On radially symmetric vibrations of circular sandwich plates of non-uniform thickness / R. Lal, R. Rani // International journal of mechanical sciences. – 2015. – No. 99. – P. 29–39.

4 Lal, R. On the radially symmetric vibrations of circular sandwich plates with polar orthotropic facings and isotropic core of quadratically varying thickness by harmonic differential quadrature method / R. Lal, R. Rani // Meccanica. – 2016. – No. 51. – P. 611–634. 5 Rani, R. Radially symmetric vibrations of exponentially tapered clamped circular sandwich plate using harmonic differential quadrature method / R. Rani, R. Lal // Mathematical analysis and its applications. – 2015. – No. 143. – P. 633–643.

6 Lal, R. On the use of differential quadrature method in the study of free axisymmetric vibrations of circular sandwich plates of linearly varying thickness / R. Lal, R. Rani // Journal of vibration and control. – 2016. – No. 7 (22). – P. 1729–1748.

7 **Леоненко**, **Д. В.** Колебания круговых трехслойных пластин на упругом основании Пастернака / Д. В. Леоненко // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2014. – № 1. – С. 59–63.

8 **Зорич, В. А.** Математический анализ. Ч. I / В. А. Зорич. – 6-е изд. доп. – М. : МЦНМО, 2012. – 710 с. 9 **Bauchau, O.** Kirchhoff plate theory / O. Bauchau, J. Craig // Structural analysis. – 2009. – No. 163. – P. 819–914.

10 **Timoshenko**, **S**. On the correction for shear the differential equation for transverse vibrations of the prismatic bars / S. Timoshenko // Philosophical magazine and journal of science. – 1921. – No. 41 (245). – P. 744–746.

11 Новацкий, В. Теория упругости / В. Новацкий. – М. : Мир, 1975. – 872 с.

12 **Маркова, М. В.** Вынужденные колебания круговой трёхслойной пластины ступенчато-переменной толщины / М. В. Маркова // Известия Гомельского гос. ун-та им. Ф. Скорины. Естественные науки. – 2022. – № 3 (132). – С. 121–127.

13 Тонг, К. Н. Теория механических колебаний / К. Н. Тонг. – М. : Машгиз, 1963. – 351 с.

УДК 621.793

РЕАКЦИОННЫЙ СИНТЕЗ ЖАРОСТОЙКИХ ПОКРЫТИЙ ДЛЯ ЗАЩИТЫ ОТ ОКИСЛЕНИЯ ЖАРОПРОЧНЫХ МАТЕРИАЛОВ НА ОСНОВЕ УГЛЕРОДА

А. И. МАТУЛЯК, А. Н. АСТАПОВ, И. В. СУКМАНОВ, А. Н. ТАРАСОВА, В. С. ТЕРЕНТЬЕВА Московский авиационный институт (НИУ), Российская Федерация

Исследование посвящено разработке тонкослойных покрытий [1–3], предназначенных для защиты от высокотемпературного окисления жаропрочных углерод-керамических композиционных материалов (УККМ), перспективных для применения в теплонапряженных конструкциях скоростных маневрирующих летательных аппаратов и возвращаемых космических аппаратов.

Приведены результаты исследований в области реакционного синтеза покрытий на основе $MoSi_2$ на поверхности УККМ класса C_f/C-SiC из порошковых композиций в системах Мо-Si (состав 1) и Мо-Si-HfB₂ (состав 2) при 1500 °С и давлении разрежения 8–9 МПа. Методами рентгеновского фазового анализа (РФА), сканирующей электронной микроскопии (СЭМ) и энергодисперсионной спектроскопии (ЭДС) в структуре синтезированных слоев достоверно установлены фазы [1]: MoSi₂ и Mo₄₈Si₃C_{0.6} (состав 1); MoSi₂, HfB₂, MoB и HfC (состав 2). Предложены механизмы реакционного взаимодействия в исследуемых системах с учетом образования углерода в результате пиролиза связующего в шликерных слоях и диффузии из подложки [2, 3]. Фаза MoSi₂ образуется в результате диффузионного насыщения молибдена кремнием, в том числе по механизму реакционной диффузии через промежуточные силициды Mo₃Si и Mo₅Si₃. Синтез фазы Новотного Mo₄₈Si₃C_{0.6} включает науглероживание силицида Mo₅Si₃ до предела насыщения, а далее его разложение на термодинамически стабильные фазы $Mo_{4.8}Si_3C_{0.6}$ и Mo_2C . Установлено, что в присутствии HfB₂ в реакционной системе Mo-Si-C не происходит образование фазы Новотного, а имеет место синтез фаз МоВ и HfC. Показано, что это возможно в условиях одновременного испарения кремния и науглероживания реакционной массы. При этом состав продуктов синтеза обусловлен реализацией наибольшей разницы в электроотрицательности между гафнием и углеродом, с одной стороны, молибденом и бором – с другой, что определяет максимальное снижение внутренней энергии системы. Выводы подтверждены термодинамическими расчетами.

Приведены результаты исследований в области реакционного синтеза покрытий на основе $MoSi_2$ на поверхности УККМ класса C_f/C -SiC из порошковой композиции в системе Mo-HfSi_2-SiB_4 при 1620 °C и остаточном давлении Ar ~ 1 Па. Методами РФА, СЭМ и ЭДС в структуре синтезированного слоя достоверно установлены фазы: $MoSi_2$, MoB, HfB_2 и HfB. Механизм взаимодействия предположительно включает разложение SiB_4 на SiB_6 и Si, диффузионное насыщение молибдена кремнием в условиях его частичного испарения, плавление $HfSi_2$ с образованием расплава (3Si + Hf) и фазы HfSi, растворение SiB_6 и HfSi в расплаве с одновременным химическим взаимодействием между Hf и B, с одной стороны, и Mo и B – с другой.

Исследование выполнено за счет гранта Российского научного фонда № 22-29-01476, https://rscf.ru/project/22-29-01476/.