РЕАЛИЗАЦИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ РАСЧЕТА ИЗГИБНЫХ ПОПЕРЕЧНЫХ КОЛЕБАНИЙ ТРУБОПРОВОДА ИЗ КОМПОЗИТА

С. В. КИРГИНЦЕВА, В. В. МОЖАРОВСКИЙ

Гомельский государственный университет им. Ф. Скорины, Республика Беларусь

На современном уровне развития математических моделей применительно к расчетам напряженно-деформированного состояния элементов конструкций, таких как трубы, сосуды, имеется обширная литература [1–4], но в то же время возникает необходимость создания новых компьютерных программ расчета этих сложных элементов конструкций из композиционных материалов с учетом изменяющихся граничных и краевых условий, динамических нагружений и функциональноградиентных свойств материалов. Несмотря на большие достижения в области расчета слоистых цилиндрических тел с учетом эффектов композитов, проблема решения смешанных задач с различными граничными условиями применительно моделированию работы колебаний, например, трубопроводов, слоистых сосудов из композитов или функционально-градиентных материалов и других элементов машин не освещена достаточно полно.

Строится алгоритм реализации математической модели расчета изгибных поперечных колебаний и определения собственных частот трубопровода длиной L, содержащего жидкость (или газ), движущуюся с постоянной скоростью v_0 (L>R, где R – радиус трубы). Виды закрепления концов трубопровода могут быть различными: заделка, свободное опирание, плавающая заделка, свободный конец. Считаем, что труба состоит из композита с модулем упругости E, коэффициентом Пуассона v и плотностью ρ , которые определяются по правилу смесей:

$$E = VE_a + (1-V)E_m, v = Vv_a + (1-V)v_m, \rho_1 = V\rho_a + (1-V)\rho_m$$

нижние индексы *a* и *m* характеризуют волокно и матрицу материала трубы соответственно; *V* – объемное содержание волокна в матрице композиционного материала.

Решение прямой задачи определения собственных частот изгибных колебаний трубопровода представляется обычным методом по модели Кирхгоффа. По частотам изгибных колебаний можно

Рисунок 1 – Модель трубы из композита с протекающей жидкостью

определить скоростной параметр α. На рисунке 1 показана физическая модель прямолинейного участка трубопровода с жестким защемлением концов трубы, содержащего движущуюся жидкость.

Записав основное уравнение колебаний представленной модели [2]

$$EI\frac{\partial^4 w}{\partial z^4} + \rho_2 \upsilon_0^2 \frac{\partial^2 w}{\partial z^2} + 2\rho_2 \upsilon_0 \frac{\partial^2 w}{\partial z \partial t} + (\rho_1 + \rho_2) \frac{\partial^2 w}{\partial t^2} = 0, \qquad (1)$$

ищем его решение в виде $w(z,t) = W u(z/L) e^{i\Omega t}$, где E – модуль Юнга композитного материала трубы; $I \approx \pi R^3 \delta R$ – момент инерции трубы (δR – толщина стенки трубы); ρ_1 – погонная плотность композитного материала трубы; ρ_2 – погонная плотность транспортируемой среды; u – комплексная безразмерная амплитуда поперечного перемещения трубы; W – некоторое характерное поперечное перемещение трубы; Ω – частота собственных колебаний трубы.

Аналогично работе [2] характеристическое уравнение в безразмерных переменных примет вид

(A)

$$u^{(4)} + \alpha^2 N u + 2i\alpha N \omega u - \omega^2 u = 0, \quad u = u(x), \tag{2}$$

где $\omega = \Omega L / V_0$ – безразмерная собственная частота; x = z / L – безразмерная координата; $V_0 = L^{-1} (EI / (\rho_1 + \rho_2))^{1/2}$ – характерная скорость распространения упругих колебаний в трубе; $\alpha = \upsilon_0 / V_0$ – скоростной параметр; $N = m_2 / (m_1 + m_2)$ – инерционный параметр; i – мнимая единица. Граничные условия, необходимые для решения уравнения (2), в случае жесткого защемления концов трубы имеют вид

$$u(0) = u'(0) = u(1) = u'(1) = 0.$$
(3)

Известно [2], что частное решение уравнения (2) находим в виде $u = Ce^{kx}$ и затем строим характеристическое уравнение для нахождения комплексных значений *k*. Тогда общее решение уравнения (2) будет иметь вид [2, 3]

$$u(x) = \sum_{j=1}^{4} C_j e^{k_j(x)}.$$
(4)

Исходя из граничных условий для краевой задачи получаем систему алгебраических уравнений для нахождения неизвестных C_j , строим алгоритм расчета определителя матрицы для нахождения собственных частот при колебаниях [2]. Находим нетривиальные решения, приравняв произведение определителя соответствующей матрицы на комплексно-сопряженный к ней к нулю. Для нахождения параметров неизвестных значений комплексного волнового параметра $k = k_j$, j = 1, 2, 3, 4 уравнения (2) представим в виде

$$k^{4} + pk^{2} + iqk + r = 0$$
, где $p = \alpha^{2}N$, $q = 2\alpha N\omega$, $r = -\omega^{2}$, (5)

применяя формулу Феррари [5], запишем резольвенту уравнения (5) и найдем его решение. Особенность представленного алгоритма заключается в применении определенной методики [6] решения кубического уравнения и, при необходимости, уточнении корней по методу Ньютона.

Для тестирования алгоритма расчета приводим сравнения (рисунок 2, *a*) результатов расчета зависимости собственной частоты ω от скоростного параметра α (график 1 – по представленной методике, график 2 – из статьи [2]), на рисунке 2, δ – пример расчета влияния процентного содержания волокон в матрице материала трубы на собственную частоту ω и скоростной параметр α (L = 1 м; $v_0 = 10$ м/с; R = 0,1 м; $\delta R = 0,01$ м; $\rho_2 = 1000$ кг/м³; $E_a = 200 \cdot 10^9$ H/м²; $v_a = 0,25$; $\rho_a = 5000$ кг/м³; $E_m = 600 \cdot 10^9$ H/м²; $v_m = 0,23$; $\rho_m = 8000$ кг/м³).

Рисунок 2 – Графики зависимостей: $a - \omega$ от α ; $\delta - \omega$ и α от v

Список литературы

1 **Можаровский, В. В.** Прикладная механика слоистых тел из композитов / В. В. Можаровский, В. Е. Старжинский. – Минск : Наука и техника, 1988. – 280 с.

2 Акуленко, Л. Д. Основные свойства собственных колебаний протяженного участка трубопровода / Л. Д. Акуленко, М. И. Иванов, Л. И. Коровина // Механика твердого тела. – 2013. – № 4. – С. 119–134.

3 **Talib, E. H.** Semi-analytic solution for stability and free vibration of functionally graded (FG) material micro-pipe conveying fluid / E. H. E. Talib, N. M. Abed // International journal of energy and environment. – 2018. – Vol. 9, is. 6. – P. 563–580.

4 Хакимов, А. Г. Определение скорости движущегося стержня и толщины покрытия по собственным частотам изгибных колебаний / А. Г. Хакимов // Труды института механики им. Р. Р. Мавлютова. – 2016. – Т. 1, № 1. – С. 10–15.

5 Wein, R. High-level filtering for arrangements of conic arcs / R. Wein // Algoritms – ESA 2022. – 2002. – P. 884–896.

6 Kulkarni, R. G. Unified method for solving general polynomial equations of degree less than five / R. G. Kulkarni // Alabama Journal of Mathematics. -2006. - P. 1-18.