Список литературы

1 Москвитин, В. В. Циклические нагружения элементов конструкций / В. В. Москвитин. – М. : URSS, 2019. – 344 с. 2 Старовойтов, Э.И. Деформирование трехслойных элементов конструкций на упругом основании / Э. И. Ста-

ровойтов, А. В. Яровая, Д. В. Леоненко. – М. : Физматлит, 2006. – 379 с. 3 Власов, В. 3. Тонкостенные упругие стержни / В. 3. Власов. – М. : Физматгиз, 1959. – 568 с.

4 Кабулов, В. К. Алгоритмизация в теории упругости и деформационной теории пластичности / В. К. Кабулов. – Ташкент : Фан, 1966. – 394 с.

5 Рашидов, Т. Р. Сейсмостойкость подземных трубопроводов / Т. Р. Рашидов, Г. Х. Хожметов. – Ташкент : Фан, 1985. – 152 с.

6 Рузиева, Н. Б. Нелинейное деформирование подземных трубопроводов при циклическом нагружении / Н. Б. Рузиева, А. Абдусаттаров // Проблемы безопасности на транспорте : материалы XI Междунар. науч.-практ. конф. В 2 ч. Ч. 2. – Гомель, БелГУТ, 2021. – С. 181–183.

7 Абдусаттаров, А. О модели взаимодействия подземного трубопровода с грунтом / А. Абдусаттаров, Н. Б. Рузиева // Современные методы и технологии геотехники и фундаментостроения в решении проблем прочности, устойчивости и сейсмостойкости сооружений : материалы Междунар. науч.-практ. конф. – Ташкент : ТАСИ, 2021. – С. 214–216.

8 Колтунов, М. А. Ползучесть и релаксация / М. А. Колтунов. – М. : Высш. шк., 1979. – 272 с.

УДК.539.3

МОДЕЛИРОВАНИЕ РАСЧЕТА ДЕФОРМИРОВАНИЯ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕЧНЫХ КОНСТРУКЦИЙ ПРИ РАЗЛИЧНЫХ ВИДАХ НАГРУЖЕНИЙ

А. АБДУСАТТАРОВ, Н. Х. САБИРОВ

Ташкентский государственный транспортный университет, Республика Узбекистан

Приводятся на основе разработанные моментной теории оболочек и вариационного принципа уточненные расчетные модели деформирования цилиндрических оболочечных конструкций. Получена система дифференциальных уравнений с граничными и начальными условиями. Для решения краевых задач применены численные методы.

Приведены геометрические и физические соотношения для цилиндрической оболочки. Предположено, что срединная поверхность оболочки отнесена к криволинейной ортогональной системе координат $\alpha = z / L$, $\beta = s / R$. Следуя теории оболочек [1,2], перемещения произвольной точки тела оболочки представим в виде

$$U_{\alpha} = \left(1 + k_{1}\gamma\right)U - \frac{\gamma}{A} \cdot \frac{\partial W}{\partial \alpha}, U_{\beta} = \left(1 + k_{2}\gamma\right)V - \frac{\gamma}{B} \cdot \frac{\partial W}{\partial \beta}, U_{\gamma} = W(\alpha, \beta).$$
(1)

Коэффициенты Ламе и их отношений представим в виде рядов по переменной γ с точностью $(\not k_i)^2$:

$$\frac{1}{H_2} = \frac{1}{B} \left(1 - k_2 \gamma + k_2^2 \gamma^2 \right), \quad \frac{H_2}{H_1} = \frac{B}{A} \left(1 + k_2 \gamma \right), \quad \frac{H_1}{H_2} = \frac{A}{B} \left(1 - k_2 \gamma + k_2^2 \gamma^2 \right),$$

для определения деформаций получены следующие уточненные формулы:

$$e_{\alpha\alpha} = \frac{1}{R} \frac{\partial U}{\partial \alpha} - \frac{\gamma}{R^2} \frac{\partial^2 W}{\partial \alpha^2}, \quad e_{\beta\beta} = \frac{\partial V}{R \partial \beta} - \left(\gamma - k_2 \gamma^2\right) \frac{\partial^2 W}{R^2 \partial \beta^2} + \left(1 - k_2 \gamma + k_2^2 \gamma^2\right) k_2 W,$$

$$e_{\alpha\beta} = \left(1 - k_2 \gamma + k_2^2 \gamma^2\right) \frac{\partial U}{B \partial \beta} - \left(\gamma - k_2 \gamma^2\right) \frac{\partial^2 W}{AB \partial \alpha \partial \beta} + \left(1 + k_2 \gamma\right) \frac{\partial V}{A \partial \alpha} - \frac{\gamma}{AB} \frac{\partial^2 W}{\partial \alpha \partial \beta}.$$
(2)

Считается, что цилиндрическая оболочка деформируется в пределах упругости. Тогда компоненты напряжений определяются по обобщенному закону Гука:

$$\sigma_{\alpha} = (\lambda + 2\mu)\Delta - 2\mu(e_{\beta\beta} + e_{\gamma\gamma}), \sigma_{\beta} = (\lambda + 2\mu)\Delta - 2\mu(e_{\alpha\alpha} + e_{\gamma\gamma}), \tau_{\alpha\beta} = \mu e_{\alpha\beta}.$$
 (3)

Для получения уравнения движения цилиндрических оболочечных конструкций воспользовались вариационным принципом Гамильтона – Остроградского. Учитывая выражения перемещений (1), деформаций (2) и обобщенного закона Гука (3), а также выполняя интегрирование по частям, вводя некоторые обозначения из вариационного уравнения, получили системы дифференциальных уравнений движения с граничными и начальными условиями. Для решения краевых задач применяется метод Бубнова – Галеркина [3]:

$$U = \sum_{n} U_{n}(\alpha, t) \cos \frac{n\pi\beta}{\beta_{1}}, \quad V = \sum_{n} V_{n}(\alpha, t) \sin \frac{n\pi\beta}{\beta_{1}}, \quad W = \sum_{n} W_{n}(\alpha, t) \cos \frac{n\pi\beta}{\beta_{1}}.$$
(4)

После некоторых преобразований получена уточненная система дифференциальных уравнений для цилиндрических оболочек с учетом граничных и начальных условий:

$$-\alpha_{1}^{(1)}\frac{\partial^{2}W_{n}}{\partial t^{2}} + \alpha_{2}^{(1)}\frac{\partial^{4}W_{n}}{\partial t^{2}\partial \alpha^{2}} - \alpha_{3}^{(1)}\frac{\partial^{2}V_{n}}{\partial t^{2}} - \alpha_{4}^{(1)}\frac{\partial^{4}W_{n}}{\partial \alpha^{4}} + \alpha_{5}^{(1)}\frac{\partial^{2}W_{n}}{\partial \alpha^{2}} - \alpha_{6}^{(1)}\frac{\partial U_{n}}{\partial \alpha} - \alpha_{7}^{(1)}W_{n} - \alpha_{8}^{(1)}V_{n} + Z_{n} = 0;$$

$$-\alpha_{1}^{(2)}\frac{\partial^{2}U_{n}}{\partial t^{2}} + \alpha_{2}^{(2)}\frac{\partial^{2}U_{n}}{\partial \alpha^{2}} + \alpha_{4}^{(2)}\frac{\partial V_{n}}{\partial \alpha} + \alpha_{3}^{(2)}\frac{\partial W_{n}}{\partial \alpha} - \alpha_{5}^{(2)}U_{n} + X_{n} = 0;$$

$$-\alpha_{2}^{3}\frac{\partial^{2}V_{n}}{\partial t^{2}} + \alpha_{1}^{(3)}\frac{\partial^{2}W_{n}}{\partial t^{2}} - \alpha_{4}^{(3)}\frac{\partial U_{n}}{\partial \alpha} + \alpha_{3}^{(3)}\frac{\partial^{2}V_{n}}{\partial \alpha^{2}} + \alpha_{5}^{(3)}W_{n} - \alpha_{6}^{(3)}V_{n} + Y_{n} = 0.$$
(5)

Систему дифференциальных уравнений (5) можно записать в векторной форме

$$A_{1}\ddot{U}_{n} + A_{2}\ddot{U}_{n}^{II} + A_{3}U_{n}^{IV} + A_{4}U_{n}^{II} + A_{5}U_{n}^{I} + A_{6}U_{n} + F_{n} = 0,$$
(6)

где $U_k = (W_k, U_k, V_k)^T$, $F_k = (Z_k, X_k, Y_k)^T$, A_i – матрица третьего порядка.

Для решения краевых задач применяется метод конечных разностей второго порядка точности [4]. На основе использования центрально разностных формул получена следующая система алгебраических уравнений:

$$B_{n}U_{n,i-1}^{k+1} + C_{n}U_{n,i}^{k+1} + B_{n}U_{n,i+1}^{k+1} + \overline{A}_{n}U_{n,i+1}^{k+1} + \overline{B}_{n}U_{n,i-1}^{k} + \overline{C}_{n}U_{n,i}^{k} + \overline{D}_{n}U_{n,i+1}^{k} + \overline{A}_{n}U_{n,i+2}^{k} + B_{n}U_{n,i-1}^{k-1} + C_{n}U_{n,i}^{k-1} + B_{n}U_{n,i+1}^{k-1} + \tau^{2}F_{n,i}^{k} = 0.$$
(7)

После аппроксимации начальное условие (7) примет следующий вид:

$$\left[\bar{M}_{1}U_{n,i-1}^{k+1} + \bar{M}_{2}U_{n,i}^{k+1} + \bar{M}_{3}U_{n,i+1}^{k+1} - \bar{M}_{1}U_{n,i+1}^{k+1} - \bar{M}_{1}U_{n,i-1}^{k-1} - \bar{M}_{2}U_{n,i}^{k-1} - \bar{M}_{3}U_{n,i+1}^{k-1}\right] \cdot t_{0}h\delta U_{n,i+1}^{k-1} = 0.$$
(8)

Считается, что цилиндрическая оболочка защемлена при α = 0 и α = 1. В векторном виде граничные условия выражаются следующим образом:

$$U_{n,0}^{j} = 0; A'U_{n,-1}^{j} = A'U_{n,1}^{j}; U_{n,N}^{j} = 0; A'U_{n,N+1}^{j} = A'U_{n,N-1}^{j}.$$
(9)

Решение разностной краевой задачи (7)-(9) осуществляется методом прогонки [3, 5, 6].

В качестве примера призведен расчет цилиндрических оболочечных конструкций – котла цистерны по полубезмоментной теории В. З. Власова. Решение задачи представляется в виде ряда

$$V = \sum_{n=2}^{\infty} V_n(\alpha) \sin n\beta; W_n(\alpha) = \sum_{n=2}^{\infty} V_n(\alpha) n \cos n\beta; U_n(\beta) = \sum_{n=2}^{\infty} \frac{\partial V_n(\alpha)}{\partial \alpha} \cdot \frac{1}{n} \cos n\beta.$$
(10)

Рассмотрена процедура расчета цилиндрической оболочки, усиленной в опорных сечениях z = 0 и z = 1 жесткими кольцами. Считается, что оболочка заполнена до некоторого уровня H жидкостью, создающей нормальные давления $p_n = p_n(s)$ на её стенки. Давление жидкости P_n определяется по формуле [1]

$$p_n = -\tilde{\gamma} R(\cos\beta - \cos\beta_0), \qquad (11)$$

где γ̃ – объемный вес жидкости; β₀ – центральный угол, характеризующий степень наполнения оболочки.

В таблице 1 приведены численные результаты расчета цилиндрической оболочки котла цистерны (для сечения z = l/2) при следующих сходных данных: R = 150 см; l = 1120 см; h = 0.6 см; $\beta_0 = 33^\circ$; $\tilde{\gamma} = 0.001$ кг/см² для различных β .

таолица	1					
Значе- ния <i>п</i>	β	$U(z, s) \cdot 10^2$	V(z, s)	W(z, s)	M(z, s)	σ(<i>z</i> , <i>s</i>)
<i>n</i> = 2	0	0,41391	0	-0,06221	-0,29862	36,74160
	π/6	0,20680	-0,02695	-0,03108	-0,14920	18,35741
	π/3	-0,20726	-0,02693	0,03115	0,14953	-18,39760
	π/2	-0,41391	0,00039	0,06221	0,29863	-36,74162
	2π/3	-0,20635	0,02697	0,03102	0,14888	-18,31710
	5π/6	0,20771	0,02691	-0,03122	-0,14986	18,43781
	π	0,41391	-0,00079	-0,06221	-0,29862	36,74152
<i>n</i> = 3	0	0,64392	0	-0,21777	-2,78742	57,15900
	π/6	-0,00041	-0,07259	0,00014	0,00176	-0,03614
	π/3	-0,64392	0,00092	0,21777	2,78742	-57,15901
	π/2	0,00012	0,07259	-0,00042	-0,00529	0,10842
	2π/3	0,64392	-0,00018	-0,21777	-2,78741	57,15880
	5π/6	-1,00804	-0,07259	0,00069	0,00881	-0,18070
	π	-0,64392	0,00028	0,21777	2,78740	-57,15860

TC

На рисунке 1 представлены эпюры нормальных напряжений для сечения z = l/2 при различных значениях n = 1, 2, 3, 4.

Рисунок 1

Из рисунка 1 видно, что распределение напряжений в оболочке котла цистерны существенно отличается для различных *n*. Для сравнительного анализа произведен расчет НДС оболочечной конструкции – котла цистерны с применением комплекса ANSYS [7].

Список литературы

1 Власов, В. З. Общая теория оболочек и ее приложения в технике / В. З. Власов. – М. : Гостехиздат, 1949. – 761 с.

2 Старовойтов, Э. И. Вязкоупругопластические слоистые пластины и оболочки / Э. И. Старовойтов. – Гомель : БелГУТ, 2002. – 344 с.

3 Буриев, Т. Алгоритмизация расчета несущих элементов тонкостенных конструкций / Т. Буриев. – Ташкент : Фан, 1986. – 244 с.

4 Годунов, С. К. Разностные схемы / С. К. Годунов, В. С. Рябенький. – М. : Наука, 1973. – 400 с.

5 Абдусаттаров, А. К решению разностных краевых задач составных оболочечных конструкций типа цистерны / А. Абдусаттаров, Н. Х. Сабиров // Проблемы механики. – Ташкент, 2018. – № 1. – С. 6–12.

6 Абдусаттаров, А. К построению разностной схемы расчета магистральных трубопроводов при динамическом нагружении / А. Абдусаттаров, Н. Х. Сабиров, Н Б. Рузиева // Роль в современном обществе информационных систем и технологии : материалы Респ. науч.-практ. конф. : НамИСИ. – 2021. – С. 43–44.

7 **Сабиров, Н. Х.** Компьютерная реализация решения задача составных оболочечных конструкций котла цистерны / Н. Х. Сабиров // Вестник ТашИИТ. – 2018. – № 4. – С. 47–54.