Список литературы

1 Ильюшин, А. А. Труды. Пластичность / А. А. Ильюшин. – М. : Логос, 2004. – 388 с.

2 Москвитин, В. В. Циклические нагружения элементов конструкций / В. В. Москвитин. – М. : URSS, 2019. – 344 с.

З Старовойтов, Э. И. Деформирование трехслойных элементов конструкций на упругом основании / Э. И. Старовойтов, А. В. Яровая, Д. В. Леоненко. – М. : Физматлит, 2006. – 379 с.

4 Буриев, Т. Алгоритмизация расчета несущих элементов тонкостенных конструкций / Т. Буриев. – Ташкент : Фан, 1986. – 244 с.

5 Численное решение задач для упругопластических стержней при пространственно-переменном нагружении с учетом обобщенного принципа Мазинга и повреждаемости материалов / А. А. Абдусаттаров [и др.] // Упругость и неупругость : матер. междунар. науч. симп. по проблемам механики деформируемых тел, посвященного 110-летию со дня рождения А. А. Ильюшина. – М. : МГУ. – С. 156–162.

6 Абдусаттаров, А. К моделированию расчета упругопластических стержней при пространственно-переменном нагружении с учетом накопления повреждаемости / А. Абдусаттаров, Ф. Э. Абдукадиров, А. И. Исомиддинов // Проблемы вычислительной и прикладной математики. – 2019. – № 5(23). – С. 5–9.

УДК 539.3

РАСЧЕТНЫЕ МОДЕЛИ И РЕШЕНИЯ ЗАДАЧ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ ПРИ ЦИКЛИЧЕСКИХ НАГРУЗКАХ С УЧЕТОМ ВЗАИМОДЕЙСТВИЯ И ПОВРЕЖДАЕМОСТИ МАТЕРИАЛОВ

А. АБДУСАТТАРОВ, Н. Б. РУЗИЕВА

Ташкентский государственный транспортный университет, Республика Узбекистан

В статье приводятся математические модели и методика расчета трубопроводов при однократном и циклическом нагружении с учетом накопления повреждаемости и взаимодействий с окружающим грунтом. На основе теории вязкоупругопластичности [1,2] и вариационного принципа Гамильтона – Остроградского получена система дифференциальных (интегро- дифференциальных) уравнений движения трубопроводов с учетом взаимодействий с грунтом и повреждаемости материала. Следуя теории В. В. Москвитина, введем разности

$$\overline{u}_{i}^{(n)} = (-1)^{n} (u_{i}^{(n-1)} - u_{i}^{(n)}), \quad \overline{e}_{ij}^{(n)} = (-1)^{n} (e_{ij}^{(n-1)} - e_{ij}^{(n)}), \quad \overline{\sigma}_{ij}^{(n)} = (-1)^{n} (\sigma_{ij}^{(n-1)} - \sigma_{ij}^{(n)}). \tag{1}$$

Согласно статическим гипотезам [3, 4] общие перемещения трубопровода представим в цилиндрических координатах ($x = x, y = r\cos\gamma, z = r\sin\gamma$):

$$\overline{u}_{1}^{(n)}(x,r,\gamma,t) = \overline{u}^{(n)}(x,t) - \overline{\alpha}_{1}^{(n)}(x,t)r\cos\gamma - \overline{\alpha}_{2}^{(n)}(x,t)r\sin\gamma + \phi\overline{v}^{(n)}(x,t) + a_{1}\beta_{1}^{(n)}(x,t) + a_{2}\beta_{2}^{(n)}(x,t),$$

$$\overline{u}_{2}^{(n)}(x,r,\gamma,t) = \overline{\upsilon}^{(n)}(x,t) - \overline{\theta}^{(n)}(x,t)r\sin\gamma, \ \overline{u}_{3}^{(n)}(x,r,\gamma,t) = \overline{w}^{(n)}(x,t) + \overline{\theta}^{(n)}(x,t)r\cos\gamma,$$
(2)

где $\overline{\alpha}_{1}^{(n)}, \overline{\alpha}_{2}^{(n)}$ – углы поворота сечения при чистом изгибе при *n*-м нагружении; $\overline{\beta}_{1}^{(n)}, \overline{\beta}_{2}^{(n)}$ – углы поперечного сдвига; $\overline{\theta}^{(n)}$ – угол кручения; $\overline{\nu}_{1}^{(n)}$ – погонная закрутка при *n*-м нагружении; φ – функция кручения Сен-Венана.

Согласно (1), (2) и соотношениям Коши определены компоненты деформации и напряжений при *n*-м нагружении. Для вывода уравнения движения трубопровода при пространственном нагружении с учетом упругопластических деформаций и взаимодействий используется вариационный принцип Гамильтона – Остроградского:

$$\delta \int_{t} (T^{(n)} - \Pi^{(n)} + A^{(n)}) dt = 0.$$

Для определения вариации кинетической, потенциальной энергии и вариации работы внешних сил в данной постановке имеем следующие соотношения:

$$\delta \int_{t} T^{(n)} dt = \int_{x} \tilde{A} \frac{\partial Y^{(n)}}{\partial t} E \delta Y^{(n)} dx \Big|_{t} - \int_{t} \int_{x} \tilde{A} \frac{\partial^{2} Y^{(n)}}{\partial t^{2}} E \delta Y^{(n)} dx dt ; \qquad (3)$$

$$\delta \int_{t} \Pi^{(n)} dt = \int_{t} \left\{ \left(A^{\mathbf{y}\Pi} - A^{\Pi\Pi} \right) \frac{\partial Y^{(n)}}{\partial x} + \left(B^{\mathbf{y}\Pi} - B^{\Pi\Pi} \right) Y^{(n)} \right\} E \delta Y^{(n)} dt \Big|_{x} + \int_{t} \int_{x} \left\{ \frac{\partial}{\partial x} \left(\left(A^{\mathbf{y}\Pi} - A^{\Pi\Pi} \right) \frac{\partial Y^{(n)}}{\partial x} + \left(B^{\mathbf{y}n} - B^{nn} \right) Y^{(n)} \right) + \left(C^{\mathbf{y}n} - C^{nn} \right) \frac{\partial Y^{(n)}}{\partial x} + \left(D^{\mathbf{y}n} - D^{nn} \right) Y^{(n)} \right\} E \delta Y^{(n)} dx dt ;$$

$$(4)$$

$$\left(B^{yn} - B^{nn}\right)Y^{(n)}\right) + \left(C^{yn} - C^{nn}\right)\frac{\partial I}{\partial x} + \left(D^{yn} - D^{nn}\right)Y^{(n)}\right\}E\delta Y^{(n)}dxdt;$$

$$(4)$$

$$\delta \int_{t} A^{(n)} dt = \int_{t} Q^{\Gamma(n)} \delta Y^{(n)} dt \Big|_{x} + \int_{t} \int_{x} Q^{\Pi(n)} dY^{(n)} dx dt , \qquad (5)$$

где $Y^{(n)} = \{u^{(n)}, v^{(n)}, w^{(n)}, \alpha_1^{(n)}, \alpha_2^{(n)}, \theta^{(n)}, v_1^{(n)}, \beta_1^{(n)}, \beta_2^{(n)}\}$ – вектор перемещения, матрицы *A*, *B*, *C*, *D* – квадратичные матрицы девятого порядка; Q^n и $Q^{\text{гр}}$ – векторы внешних сил девятого порядка; E – единичная матрица. В случае учета силы взаимодействия трубопровода с грунтом поверхностные силы $\overline{q}_i^{(n)}$, торцевые силы $\overline{f}_i^{(n)}$ согласно теории Т. Р. Рашидова и Г. Х. Хожметова [5] принимаются в виде

$$\overline{q}_{i}^{(n)} = -k_{i}^{(n)}(\overline{u}_{i}^{(n)} - \overline{u}_{i}^{0(n)}) + \widetilde{q}_{i}^{(n)}; \quad \overline{f}_{i}^{(n)} = -k_{i}^{\operatorname{rp}(n)}(\overline{u}_{i}^{(n)} - \overline{u}_{i}^{0(n)}) + \widetilde{f}_{i}^{(n)}, \tag{6}$$

где $k_i^{(n)}$ – коэффициент взаимодействия трубопровода с окружающей средой на поверхности при переменном нагружении; $k_i^{\text{гр}(n)}$ – коэффициент взаимодействия трубы с окружающей средой на торцах; $\overline{u}_i^{0(n)}$ – составляющая пространственного сейсмического перемещения грунта по координатным осям при переменном нагружении.

Согласно (1) и (6) выражения $\overline{q}_i^{(n)}, \overline{f}_i^{(n)}$ представлены в виде

$$\begin{split} \overline{q}_{1}^{(n)} &= -k_{1}^{(n)} \left[(\overline{u}^{(n)} - \overline{u}^{0(n)}) - y(\overline{\alpha}_{1}^{(n)} - \overline{\alpha}_{1}^{0(n)}) - z(\overline{\alpha}_{2}^{(n)} - \overline{\alpha}_{2}^{0(n)}) + \phi(\overline{v}^{(n)} - \overline{v}^{0(n)}) + a_{1}(\overline{\beta}_{1}^{(n)} - \overline{\beta}_{1}^{0(n)}) + a_{1}(\overline{\beta}_{1}^{(n)} - \overline{\beta}_{1}^{0(n)}) + a_{2}(\overline{\beta}_{2}^{(n)} - \overline{\beta}_{2}^{0(n)}) + \widetilde{q}_{1}^{(n)} \right], \quad \overline{q}_{2}^{(n)} &= -k_{2}^{(n)} \left[(\overline{v}^{(n)} - \overline{v}^{0(n)}) - z(\overline{\theta}^{(n)} - \overline{\theta}^{0(n)}) + \widetilde{q}_{2}^{(n)} \right], \\ \overline{q}_{3}^{(n)} &= -k_{3}^{(n)} \left[(\overline{w}^{(n)} - \overline{w}^{0(n)}) + y(\overline{\theta}^{(n)} - \overline{\theta}^{0(n)}) + \widetilde{q}_{3}^{(n)} \right]. \end{split}$$
(7)

Учитывая соотношения (6) и (5) после некоторых преобразований, а также ряд обозначений, получили соотношения для вариации работы внешних сил в работе [6], где коэффициенты взаимодействия, определяются из эксперимента при повторно-переменном нагружении с учетом поврежденности.

В частности, при вязкоупругом взаимодействии трубопровода с окружающим грунтом для сил взаимодействия, учитывающих повреждаемость грунта по принципу Вольтерра, имеем [7]

$$P^{b}(x, t) = D^{*}_{A}(Y - Y_{0}) = D_{A}\left[(Y - Y_{0}) - \int_{0}^{t} R(t' - \tau')[Y(x, \eta) - Y_{0}(x, \eta)]d\tau\right].$$
(8)

В этом случае, исходя из принцип Гамильтона – Остроградского и (3)–(5), (7), (8), получена система интегро-дифференциальных уравнений трубопровода с учетом взаимодействия:

$$-A\frac{\partial^2 Y}{\partial t^2} + B\frac{\partial^2 Y}{\partial x^2} + C\frac{\partial Y}{\partial x} + D_n Y + D_A (Y - Y_0) - D_A \int_0^t R(t' - \tau') [Y(x, \eta) - Y_0(x, \eta)] d\tau + F = 0; \quad (9)$$

$$\left[-\overline{B}\frac{\partial Y}{\partial x} + \overline{C}_{\Pi}Y + \overline{C}_{A}\left(Y - Y_{0}\right) - \overline{C}_{A}\int_{0}^{t} R\left(t' - \tau'\right)\left[Y(x,\eta) - Y_{0}(x,\eta)\right]d\tau + P^{2p}\left]\delta Y\right|_{x} = 0; \quad (10)$$

$$A\frac{\partial Y}{\partial t}E\delta Y\Big|_{t} = 0, \tag{11}$$

где $R(t' - \tau')$ – слабосингулярное трехпараметрическое ядро типа Ржаницына – Колтунова [8], в частности, для первого приближения считается, что $R(t' - \tau') = R(t - \tau)$.

Здесь

$$R(t) = \overline{A}_{b}e^{-\overline{\beta}t}t^{\alpha-1}, \quad 0 < \alpha < 1.$$

После использования квадратурных формул из (9)-(11) имеем

$$-A\frac{\partial^2 Y}{\partial t^2} + B\frac{\partial^2 Y}{\partial x^2} + C\frac{\partial Y}{\partial x} + D_n Y + D_A \left[\left(Y - Y_0 \right) - \frac{A_b}{\alpha} \sum_{k=1}^n B_k^b e^{-\beta t_k} \left[Y \left(x, t_n - t_k \right) - Y_0 \left(x, t_n - t_k \right) \right] \right] + F = 0; \quad (12)$$

$$\left\{-\overline{B}\frac{\partial Y}{\partial x} + \overline{C}_{\Pi}Y + \overline{C}_{A}\left[\left(Y - Y_{0}\right) - \frac{A_{b}}{\alpha}\sum_{k=1}^{n}B_{k}^{b}e^{-\beta t_{k}}\left[Y\left(x, t_{n} - t_{k}\right) - Y_{0}\left(x, t_{n} - t_{k}\right)\right]\right] + P^{\mathrm{rp}}\right\}\delta Y\Big|_{x} = 0; \quad (13)$$

$$A\frac{\partial Y}{\partial t}E\delta Y\Big|_{t} = 0.$$
(14)

В случае учета накопления повреждений ядра типа $R[t, \tau, \eta(\xi)]$ разлагаются в ряд [1], поэтому ограничимся первым слагаемым

$$R[t-\xi,\eta(\xi)] = R_0(t-\xi)+\eta(\xi)R_1(t-\xi).$$
⁽¹⁵⁾

В случае пространственного нагружения

$$\tau_{a} = P^{b}(x,t) = R_{0}(0) \Big[(Y - Y_{0}) - \psi_{0}(Y - Y_{0}) \Big] - R_{1}(0) \psi_{1}(Y - Y_{0}),$$
(16)

здесь $\psi_0(Y-Y_0) = \int_0^t R_0(t-\xi)(Y-Y_0)d\xi, \quad \psi_1(Y-Y_0) = \int_0^t R_1(t-\xi)\eta(\xi)(Y-Y_0)d\xi.$

Система уравнений (12)–(14) с учетом (16) примет следующий вид:

$$-A\frac{\partial^2 Y}{\partial t^2} + B\frac{\partial^2 Y}{\partial x^2} + C\frac{\partial Y}{\partial x} + D_n Y + \tilde{D}_A \left[\left(Y - Y_0 \right) - \psi_0 \left(Y - Y_0 \right) \right] - \tilde{\tilde{D}}_A \psi_1 \left(Y - Y_0 \right) + \overline{F} = 0; \quad (17)$$

$$\left\{-\overline{B}\frac{\partial Y}{\partial x}-\widetilde{C}_{\Pi}\left[\left(Y-Y_{0}\right)-\psi_{0}\left(Y-Y_{0}\right)\right]-\widetilde{\widetilde{C}}_{A}\psi_{1}\left(Y-Y_{0}\right)+P^{\mathrm{rp}}\right\}\right|_{x}=0; \quad A\frac{\partial Y}{\partial x}E\delta Y\Big|_{t}=0.$$
(18)

Система уравнений решается методом итерации (l – число итерации), при этом, например,

$$\psi_1\left(Y^{(l)} - Y_0^{(l)}\right) = \int_0^l R_0\left(t - \xi\right) \eta^{(l-1)}\left(\xi\right) \left(Y^{(l)} - Y_0^{(l)}\right) d\xi, \quad \eta^{(l-1)}\left(t\right) = \left(1 + m\right) \int_0^l \left(t - \xi\right)^m \frac{d\xi}{t_0^{1+m} \left[\sigma_u^{(l-1)}\left(\xi\right)\right]}.$$

При построении решений системы дифференциальных уравнений (17) с граничными и начальными условиями (18) применяется разностная схема второго порядка.

В качестве примера анализируются колебания стальной подземной трубы с учетом повреждаемости и вязкоупругого взаимодействия с грунтом, который имеет следующие механические и геометрические характеристики: $E = 2,3 \cdot 10^8 \text{ kH/m}^2$; $r = 7,8 \text{ kH} \cdot \text{c}^2/\text{m}^4$; R = 0,6 m, r = 0,585 m; L = 12 m. Окружающая среда – песчаный грунт с коэффициентом взаимодействия $k_x = 3,75 \cdot 10^3 \text{ kH/m}^3$. Параметры ядра для песка: A = 0,0748, $\alpha = 0,2$, $\beta = 0,048$. Сейсмическое воздействие принято в виде импульса постоянной величины – $w_0 = 0,007 \text{ m}$, значение угла наклона направления импульса к продольной оси подземного трубо-провода принимается в пределах от 0° до 90°. Расчет произведен методом конечных разностей по пространству и по времени в явной схеме.

На рисунке 1 сплошная линия *1* соответствует вязкоупругому взаимодействию, а штрихпунктирная 2 – линейно вязкоупругому случаю с учетом накопленных повреждений. Из графиков видно, что в рассмотренных решениях вязкоупругих и вязкоупругих с учетом накопления повреждаемости разница доходит до 10–15 %.

Рисунок 1 – Влияние свойств вязкости и повреждаемости на кинетику перемещений

Список литературы

1 Москвитин, В. В. Циклические нагружения элементов конструкций / В. В. Москвитин. – М. : URSS, 2019. – 344 с. 2 Старовойтов, Э.И. Деформирование трехслойных элементов конструкций на упругом основании / Э. И. Ста-

ровойтов, А. В. Яровая, Д. В. Леоненко. – М. : Физматлит, 2006. – 379 с. 3 Власов, В. 3. Тонкостенные упругие стержни / В. 3. Власов. – М. : Физматгиз, 1959. – 568 с.

4 Кабулов, В. К. Алгоритмизация в теории упругости и деформационной теории пластичности / В. К. Кабулов. – Ташкент : Фан, 1966. – 394 с.

5 Рашидов, Т. Р. Сейсмостойкость подземных трубопроводов / Т. Р. Рашидов, Г. Х. Хожметов. – Ташкент : Фан, 1985. – 152 с.

6 Рузиева, Н. Б. Нелинейное деформирование подземных трубопроводов при циклическом нагружении / Н. Б. Рузиева, А. Абдусаттаров // Проблемы безопасности на транспорте : материалы XI Междунар. науч.-практ. конф. В 2 ч. Ч. 2. – Гомель, БелГУТ, 2021. – С. 181–183.

7 Абдусаттаров, А. О модели взаимодействия подземного трубопровода с грунтом / А. Абдусаттаров, Н. Б. Рузиева // Современные методы и технологии геотехники и фундаментостроения в решении проблем прочности, устойчивости и сейсмостойкости сооружений : материалы Междунар. науч.-практ. конф. – Ташкент : ТАСИ, 2021. – С. 214–216.

8 Колтунов, М. А. Ползучесть и релаксация / М. А. Колтунов. – М. : Высш. шк., 1979. – 272 с.

УДК.539.3

МОДЕЛИРОВАНИЕ РАСЧЕТА ДЕФОРМИРОВАНИЯ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕЧНЫХ КОНСТРУКЦИЙ ПРИ РАЗЛИЧНЫХ ВИДАХ НАГРУЖЕНИЙ

А. АБДУСАТТАРОВ, Н. Х. САБИРОВ

Ташкентский государственный транспортный университет, Республика Узбекистан

Приводятся на основе разработанные моментной теории оболочек и вариационного принципа уточненные расчетные модели деформирования цилиндрических оболочечных конструкций. Получена система дифференциальных уравнений с граничными и начальными условиями. Для решения краевых задач применены численные методы.

Приведены геометрические и физические соотношения для цилиндрической оболочки. Предположено, что срединная поверхность оболочки отнесена к криволинейной ортогональной системе координат $\alpha = z / L$, $\beta = s / R$. Следуя теории оболочек [1,2], перемещения произвольной точки тела оболочки представим в виде

$$U_{\alpha} = \left(1 + k_{1}\gamma\right)U - \frac{\gamma}{A} \cdot \frac{\partial W}{\partial \alpha}, U_{\beta} = \left(1 + k_{2}\gamma\right)V - \frac{\gamma}{B} \cdot \frac{\partial W}{\partial \beta}, U_{\gamma} = W(\alpha, \beta).$$
(1)

Коэффициенты Ламе и их отношений представим в виде рядов по переменной γ с точностью $(\not k_i)^2$:

$$\frac{1}{H_2} = \frac{1}{B} \left(1 - k_2 \gamma + k_2^2 \gamma^2 \right), \quad \frac{H_2}{H_1} = \frac{B}{A} \left(1 + k_2 \gamma \right), \quad \frac{H_1}{H_2} = \frac{A}{B} \left(1 - k_2 \gamma + k_2^2 \gamma^2 \right),$$

для определения деформаций получены следующие уточненные формулы:

$$e_{\alpha\alpha} = \frac{1}{R} \frac{\partial U}{\partial \alpha} - \frac{\gamma}{R^2} \frac{\partial^2 W}{\partial \alpha^2}, \quad e_{\beta\beta} = \frac{\partial V}{R \partial \beta} - \left(\gamma - k_2 \gamma^2\right) \frac{\partial^2 W}{R^2 \partial \beta^2} + \left(1 - k_2 \gamma + k_2^2 \gamma^2\right) k_2 W,$$

$$e_{\alpha\beta} = \left(1 - k_2 \gamma + k_2^2 \gamma^2\right) \frac{\partial U}{B \partial \beta} - \left(\gamma - k_2 \gamma^2\right) \frac{\partial^2 W}{AB \partial \alpha \partial \beta} + \left(1 + k_2 \gamma\right) \frac{\partial V}{A \partial \alpha} - \frac{\gamma}{AB} \frac{\partial^2 W}{\partial \alpha \partial \beta}.$$
(2)

Считается, что цилиндрическая оболочка деформируется в пределах упругости. Тогда компоненты напряжений определяются по обобщенному закону Гука:

$$\sigma_{\alpha} = (\lambda + 2\mu)\Delta - 2\mu(e_{\beta\beta} + e_{\gamma\gamma}), \sigma_{\beta} = (\lambda + 2\mu)\Delta - 2\mu(e_{\alpha\alpha} + e_{\gamma\gamma}), \tau_{\alpha\beta} = \mu e_{\alpha\beta}.$$
 (3)

Для получения уравнения движения цилиндрических оболочечных конструкций воспользовались вариационным принципом Гамильтона – Остроградского. Учитывая выражения перемещений (1), деформаций (2) и обобщенного закона Гука (3), а также выполняя интегрирование по частям, вводя некоторые обозначения из вариационного уравнения, получили системы диф-