8 ЕСТЕСТВЕННЫЕ НАУКИ В ОБЕСПЕЧЕНИИ БЕЗОПАСНОСТИ ТРАНСПОРТНЫХ СИСТЕМ

УДК 539.3

ОБ УПРУГОПЛАСТИЧЕСКОМ ИЗГИБЕ ТОНКИХ ПЛАСТИН И СТЕРЖНЕЙ ПРИ ОДНОКРАТНОМ И ПЕРЕМЕННОМ НАГРУЖЕНИИ

Ф. Э. АБДУКАДИРОВ, С. Ш. ХОЖАХМАТОВ

Ташкентский государственный транспортный университет, Республика Узбекистан

На основе теории малых упругопластических деформаций приведены методика расчета тонких пластин и стержней при повторно-переменном нагружении [1–3]. Получены уравнения равновесия для тонких пластин в текущих величинах при переменном нагружении [4]:

$$\left\{ \frac{\partial}{\partial x^{2}} \left[(1 - \Omega_{1}^{(k)}) \left(\frac{\partial^{2} w^{(k)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{(k)}}{\partial y^{2}} \right) \right] + 2 \frac{\partial}{\partial x^{2}} \left[(1 - \Omega_{1}^{(k)}) \frac{\partial^{2} w^{(k)}}{\partial x \partial y} \right] + \frac{\partial}{\partial y^{2}} \left[(1 - \Omega_{1}^{(k)}) \left(\frac{\partial^{2} w^{(k)}}{\partial y^{2}} + \frac{1}{2} \frac{\partial^{2} w^{(k)}}{\partial x^{2}} \right) \right] \right\} = \frac{q}{D} q_{1}(x, y) - \left\{ \frac{\partial}{\partial x^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right] \right\} + \frac{2}{\partial y^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right] \right\} + \frac{2}{\partial y^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right] \right\} + \frac{2}{\partial y^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} \right) \right] \right\} + \frac{2}{\partial y^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} \right) \right] \right\} + 2\frac{\partial}{\partial y^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} \right) \right] \right\} + 2\frac{\partial}{\partial y^{2}} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} \right) \right] \right\} + 2\frac{\partial}{\partial y^{2}} \left\{ \Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} \right) \right] \right\} + 2\frac{\partial}{\partial y^{2}} \left\{ \Omega_{1}^{(k)} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right] \right\} + 2\frac{\partial}{\partial y^{2}} \left\{ \Omega_{1}^{(k)} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right] \right\} + 2\frac{\partial}{\partial y^{2}} \left\{ \Omega_{1}^{(k)} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right] \right\} - \frac{\partial}{\partial y^{2}} \left\{ \Omega_{1}^{(k)} \left[\Omega_{1}^{(k)} \left(\frac{\partial^{2} w^{0(k-1)}}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{2} w^{0(k-1)}}{\partial y^{2}} \right) \right\} \right\} \right\}$$

Дифференциальные уравнения (1) решаются при граничных условиях

$$M_{11}^{(k)} \delta \left. \frac{\partial W^{(k)}}{\partial x} \right|_r = 0, \quad R^{(n)} \delta W^{(k)} \Big|_r = 0.$$
⁽²⁾

Для решения краевых задач (1), (2) применяется метод Бубнова – Галеркина. Согласно этому методу искомая функция прогиба берется в виде ряда

$$w^{(k)}(x,y) = \sum_{i=1}^{n} T_i^{(k)} \varphi_i(x,y), \qquad (3)$$

где $T_i^{(k)}$ неизвестные коэффициенты, $\varphi_i(x,y)$ – заданные координатные функции, удовлетворяющие граничные условия (3), n – количество сохраняемых слагаемых в разложении прогиба.

Подставляя (3) в (1) и группируя слагаемые полученного уравнения, имеем

$$\sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial}{\partial x^{2}} \left[D(1 - \Omega^{(k)}) \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} \right) \right] + \gamma^{2} \frac{\partial^{2}}{\partial x \partial y} \left[D(1 - \Omega^{(k)}) \frac{\partial^{2} \varphi_{i}}{\partial x \partial y} \right] + \frac{\partial}{\partial y^{2}} \left[D(1 - \Omega^{(k)}) \left(\frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right] \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2}}{\partial x^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) + \frac{\partial}{\partial y^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right] \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2}}{\partial x^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right] \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2}}{\partial x^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right] \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2}}{\partial x^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right\} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2}}{\partial x^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right\} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \left[D\Omega^{(k)} \left(\gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial y^{2}} + \mu \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right) \right\} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2} \frac{\partial^{2} \varphi_{i}}{\partial x^{2}} \right\} T_{i}^{(k)} + \sum_{i=1}^{n} \left\{ \gamma^{2}$$

$$+\frac{\partial^{2}}{\partial y^{2}}\left[D\Omega^{(k)}\left(\frac{\partial^{2}\varphi_{i}}{\partial x^{2}}+\mu\gamma^{2}\frac{\partial^{2}\varphi_{i}}{\partial x^{2}}\right)\right]\right]T_{i}^{0^{(k-1)}} = q^{(k)}q_{1}(x,y) + \sum_{m=1}^{k-1}\sum_{i=1}^{n}\left[\left\{\gamma^{2}\frac{\partial}{\partial x^{2}}D\Omega^{o^{(k-m)}}\left(\gamma^{2}\frac{\partial^{2}\varphi_{i}}{\partial x^{2}}+\mu\gamma^{2}\frac{\partial^{2}\varphi_{i}}{\partial x^{2}}\right)\right]\right]+\gamma^{2}\frac{\partial^{2}}{\partial x\partial y}\left[D\Omega^{o^{(k-m)}}\frac{\partial^{2}\varphi_{i}}{\partial x^{2}}\right] + \frac{\partial^{2}}{\partial y^{2}}\left[D\Omega^{o^{(k-m)}}\left(\frac{\partial^{2}\varphi_{i}}{\partial y^{2}}+\mu\gamma^{2}\frac{\partial^{2}\varphi_{i}}{\partial x^{2}}\right)\right]\right]\left(T_{i}^{o^{(k-m)}}-T_{i}^{o^{(k-m-1)}}\right).$$
(4)

Теперь уравнение (4) умножим на *φ_i* и произведем дважды интегрирование по частям. Затем, учитывая краевые условия, вводя ряд обозначения получим

$$\left(A^{m} - A^{m}(T)\right)T^{(k)} = g_{i}q^{(k)} - g_{i}^{m}(T) + g_{i}^{o}, \qquad (5)$$

где вектор неизвестных коэффициентов $T^{(k)}$ определяется из системы нелинейных алгебраических уравнений (5).

На основе разработанного алгоритма [5] в качестве примера приведем результаты расчета тонких прямоугольных пластинок с учетом упругопластических свойств материала при переменном нагружении по обобщенному принципу Мазинга и повреждаемости. Расчет выполнен при следующих значениях: q(x,y)=1; $\lambda = 0.95$; $\mu = 0.5$; $\gamma = 0.8$; $N_1 = N_2 = 20$; $\delta = 2.76$; $\varepsilon = 10^{-5}$; $q^{(k)} = (-1)^{(k+1)}$. В таблице 1 для сравнения приведены значения расчетных величин в центре защемленной прямоугольной плиты при k = 1, 2, ..., 20.

k	α_k	$\omega^{(k)}$	$\times 10^2 \eta^{(k)}$	$\times 10^3 W^{(k)}$	$\times 10^2 M_y^{(k)}$
1	1,00	0,41286	0,0000	1,49092	1,97336
2	2,08	0,41789	0,0528	-1,42752	-2,10930
4	2,19	0,40637	0,1058	-1,40338	-2,18059
5	2,22	0,39736	0,2133	1,42929	2,14306
9	2,29	0,37987	0,4339	1,41411	2,20163
10	2,30	0,39304	0,4902	-1,37922	-2,27207
19	2,38	0,36384	0,8371	1,39798	2,27640
20	2,39	0,36385	1,0779	-1,36459	-2,34153

Таблица 1 – Циклически упрочняющийся материал (сплав **B-96**)

За материальные константы кинетического уравнения повреждаемости принимали следующие: $A = 1,2 \cdot 10^{-4}$; $\alpha = \beta = 5$; $\gamma = 0,8$; r = 1; $\alpha_1 = 0,97$; $B = 1,4 \cdot 10^3$.

Сравнивая значения расчетных величин в центре плиты, отметим, что с увеличением повреждаемости постепенно уменьшаются значения функции пластичности $\omega^{(k)}$, т. е. зона пластичности, а прогибы плиты от цикла к циклу становятся меньше из-за упрочнения материала В-96. Разница величин $W^{(k)}$, $M_v^{(k)}$ и $\omega^{(k)}$ при k = 1 и k = 20 составляет 8,47, 18,65 и 11,87 %.

В таблице 2 для сравнения приведены значения расчетных величин в центре защемленной прямоугольной плиты по двум теориям: с использованием обобщенного принципа Мазинга (задача 1) и обобщенной диаграммы деформирования А. П. Гусенкова – Г. В. Москвитина (задача 2).

Таблица 2 – Сравнение значения прогиба и изгибающего момента
--

	По обобщенному принципу Мазинга			По обобщенной диаграмме деформирования		
k	α_k	$10^3 W^{(k)}$	$10^2 M_y^{(k)}$	λ_k	$10^3 W^{(k)}$	$10^2 M_{11}^{(k)}$
1	1	1,49092	1,97336	0,95	1,49092	1,97336
2	2,08	□-1,42752	-2,10930	0,92	-1,47338	-2,07135
4	2,19	-1,40338	-2,18059	0,88	-1,46451	-2,12159
5	2,22	1,42929	2,14306	0,86	1,47134	2,08593
9	2,29	1,41411	2,20163	0,83	1,46312	2,13806
10	2,30	-1,37922	-2,27207	0,82	-1,45181	-2,19893
19	2,38	1,39798	2,27640	0,78	1,45169	2,20804
20	2,39	-1,36459	-2,34153	0,7	-1,44109	-2,26661

Проанализированы результаты расчетных величин: значения перемещений и изгибающего момента при исходном и циклическом нагружении. Например, при k = 5 на 3,8 и 5,71 %, при k = 20 – на 7,65 и 7,49 %. Отметим, что при максимальном значении перемещений $W^{(k)}$ и интенсивности деформаций $e^{(k)}$ при k = 1, 2, 3, 4 разница составит: $W^{(3)} = 2,46W^{(1)}$, $W^{(2)} = 1,1W^{(1)}$, $e^{(3)} = 2,1e^{(1)}$, $e^{(4)} = 1,6e^{(2)}$.

Также исследовано НДС тонкостенных стержней прямоугольного поперечного сечения, защемленного по торцам при повторно–переменном нагружении для материалов (В-96, Д-16T) [6].

Список литературы

1 Ильюшин, А. А. Труды. Пластичность / А. А. Ильюшин. – М. : Логос, 2004. – 388 с.

2 Москвитин, В. В. Циклические нагружения элементов конструкций / В. В. Москвитин. – М. : URSS, 2019. – 344 с.

З Старовойтов, Э. И. Деформирование трехслойных элементов конструкций на упругом основании / Э. И. Старовойтов, А. В. Яровая, Д. В. Леоненко. – М. : Физматлит, 2006. – 379 с.

4 Буриев, Т. Алгоритмизация расчета несущих элементов тонкостенных конструкций / Т. Буриев. – Ташкент : Фан, 1986. – 244 с.

5 Численное решение задач для упругопластических стержней при пространственно-переменном нагружении с учетом обобщенного принципа Мазинга и повреждаемости материалов / А. А. Абдусаттаров [и др.] // Упругость и неупругость : матер. междунар. науч. симп. по проблемам механики деформируемых тел, посвященного 110-летию со дня рождения А. А. Ильюшина. – М. : МГУ. – С. 156–162.

6 Абдусаттаров, А. К моделированию расчета упругопластических стержней при пространственно-переменном нагружении с учетом накопления повреждаемости / А. Абдусаттаров, Ф. Э. Абдукадиров, А. И. Исомиддинов // Проблемы вычислительной и прикладной математики. – 2019. – № 5(23). – С. 5–9.

УДК 539.3

РАСЧЕТНЫЕ МОДЕЛИ И РЕШЕНИЯ ЗАДАЧ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ ПРИ ЦИКЛИЧЕСКИХ НАГРУЗКАХ С УЧЕТОМ ВЗАИМОДЕЙСТВИЯ И ПОВРЕЖДАЕМОСТИ МАТЕРИАЛОВ

А. АБДУСАТТАРОВ, Н. Б. РУЗИЕВА

Ташкентский государственный транспортный университет, Республика Узбекистан

В статье приводятся математические модели и методика расчета трубопроводов при однократном и циклическом нагружении с учетом накопления повреждаемости и взаимодействий с окружающим грунтом. На основе теории вязкоупругопластичности [1,2] и вариационного принципа Гамильтона – Остроградского получена система дифференциальных (интегро- дифференциальных) уравнений движения трубопроводов с учетом взаимодействий с грунтом и повреждаемости материала. Следуя теории В. В. Москвитина, введем разности

$$\overline{u}_{i}^{(n)} = (-1)^{n} (u_{i}^{(n-1)} - u_{i}^{(n)}), \quad \overline{e}_{ij}^{(n)} = (-1)^{n} (e_{ij}^{(n-1)} - e_{ij}^{(n)}), \quad \overline{\sigma}_{ij}^{(n)} = (-1)^{n} (\sigma_{ij}^{(n-1)} - \sigma_{ij}^{(n)}). \tag{1}$$

Согласно статическим гипотезам [3, 4] общие перемещения трубопровода представим в цилиндрических координатах ($x = x, y = r\cos\gamma, z = r\sin\gamma$):

$$\overline{u}_{1}^{(n)}(x,r,\gamma,t) = \overline{u}^{(n)}(x,t) - \overline{\alpha}_{1}^{(n)}(x,t)r\cos\gamma - \overline{\alpha}_{2}^{(n)}(x,t)r\sin\gamma + \phi\overline{v}^{(n)}(x,t) + a_{1}\beta_{1}^{(n)}(x,t) + a_{2}\beta_{2}^{(n)}(x,t),$$

$$\overline{u}_{2}^{(n)}(x,r,\gamma,t) = \overline{\upsilon}^{(n)}(x,t) - \overline{\theta}^{(n)}(x,t)r\sin\gamma, \ \overline{u}_{3}^{(n)}(x,r,\gamma,t) = \overline{w}^{(n)}(x,t) + \overline{\theta}^{(n)}(x,t)r\cos\gamma,$$
(2)

где $\overline{\alpha}_{1}^{(n)}, \overline{\alpha}_{2}^{(n)}$ – углы поворота сечения при чистом изгибе при *n*-м нагружении; $\overline{\beta}_{1}^{(n)}, \overline{\beta}_{2}^{(n)}$ – углы поперечного сдвига; $\overline{\theta}^{(n)}$ – угол кручения; $\overline{\nu}_{1}^{(n)}$ – погонная закрутка при *n*-м нагружении; φ – функция кручения Сен-Венана.

Согласно (1), (2) и соотношениям Коши определены компоненты деформации и напряжений при *n*-м нагружении. Для вывода уравнения движения трубопровода при пространственном нагружении с учетом упругопластических деформаций и взаимодействий используется вариационный принцип Гамильтона – Остроградского:

$$\delta \int_{t} (T^{(n)} - \Pi^{(n)} + A^{(n)}) dt = 0.$$

Для определения вариации кинетической, потенциальной энергии и вариации работы внешних сил в данной постановке имеем следующие соотношения:

$$\delta \int_{t} T^{(n)} dt = \int_{x} \tilde{A} \frac{\partial Y^{(n)}}{\partial t} E \delta Y^{(n)} dx \Big|_{t} - \int_{t} \int_{x} \tilde{A} \frac{\partial^{2} Y^{(n)}}{\partial t^{2}} E \delta Y^{(n)} dx dt ; \qquad (3)$$