Опережающие мероприятия, при получении достоверной информации о состоянии тела насыпи автомобильной дороги, в конечном счёте экономически более предпочтительны, чем капитальный ремонт участка дороги [4].

Рекомендации и обоснования конструктивно-технологических решений, для быстрого применения, разрабатываются заранее и могут включать [5]:

- отвод поверхностной воды от тела земляного полотна;
- очистку откосов от снежного покрова (для охлаждения тела насыпи);
- устройство на откосах насыпи каменной наброски для их охлаждения (в том числе для предотвращения перегрева тела насыпи в летнее время);
 - глубинное охлаждение оснований с помощью сезонно охлаждающих устройств (СОУ);
 - теплоизоляцию продольных водоотводных систем.

Температурно-влажностный режим грунтов, включая грунты, находящиеся в многолетнемерзлом состоянии, определяет их несущую способность; от него зависят особенности конструктивных решений не только при проектировании, но и при получении своевременной и достоверной информации; он определяет экономически выверенный способ содержания дороги и поддержания её в работоспособном состоянии.

Список литературы

- 1 **Чудинов, С. А.** Повышение надежности лесовозных дорог в условиях изменения климата / С. А. Чудинов, О. Н. Байц // Проблемы безопасности на транспорте : материалы XI Междунар. науч.-практ. конф. (Гомель, 25–26 ноября 2021 г.) : в 2 ч. Ч. 2 ; под общ. ред. Ю. И. Кулаженко. Гомель : БелГУТ, 2021 С. 46–48.
- 2 **Скрыльников, И. Г.** Проектирование и эксплуатация земляного полотна автомобильных дорог в районах распространения многолетнемерзлых грунтов (с использованием теории риска) : автореф. дис. ... канд. техн. наук : 05–23–11 / И. Г. Стрельников; ВолГАСУ. Волгоград, 2012. 22 с.
- 3 ОДМ 218.2.091-2017. Геотехнический мониторинг сооружений инженерной защиты автомобильных дорог/ Фед. дор. агентство. M., 2019.
- 4 **Чудинов, С. А.** Повышение эффективности строительства и эксплуатации лесовозных автомобильных дорог / С. А. Чудинов, Ю. О. Емельянова // Инновационное развитие техники и технологий наземного транспорта : сборник статей II Всерос. науч.-практ. конф. (Екатеринбург, 16 декабря 2020 г.). Екатеринбург : УрФУ, 2021. С. 30–31.
- 5 **Чудинов, С. А.** Адаптационные технологии в строительстве лесовозных дорог в условиях изменения климата / С. А. Чудинов // Вестник Марийского государственного технического университета. Сер. Лес. Экология. Природопользование. 2010. № 2 (9). С. 76–81.

УДК 624.138.41

ПРИМЕНЕНИЕ ЛИГНОСУЛЬФОНАТОВ ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ЛЕСОВОЗНЫХ АВТОМОБИЛЬНЫХ ДОРОГ

С. А. ЧУДИНОВ, Н. В. ЛАДЕЙЩИКОВ Уральский государственный лесотехнический университет, г. Екатеринбург, Российская Федерация

Безопасность эксплуатации автомобильных дорог зависит от их транспортно-эксплутационного состояния в течение всего срока службы. Особенно это важно для автомобильных дорог, эксплуатирующихся с высокими транспортными нагрузками, к которым относятся лесовозные автомобильные дороги. Обеспечение требуемых качественных показателей лесовозных автомобильных дорог в течение всего срока их службы является необходимым условием для бесперебойного функционирования лесозаготовительной отрасли и безопасной эксплуатации транспортной инфраструктуры. Для повышения качества лесовозных автомобильных дорог применяются различные эффективные технологии и дорожно-строительные материалы.

Лигнин (лат. lignum – дерево) – сложный природный полимер, входящий в состав растений, продукт биосинтеза. Лигнин – самый распространенный полимер на Земле после целлюлозы. В естественном состоянии в растениях лигнин связан с целлюлозой и образует с ней структуру, по-

добную по физико-механическим свойствам железобетону (лигнин подобен бетону, микроволокна целлюлозы – арматуре), в первую очередь – прочности.

Основа любого производства на целлюлозно-бумажных комбинатах – глубокая термическая и химическая переработка древесного сырья. Лигнин образуется в большом количестве при переработке целлюлозы. Его как технологические отходы подают в склады-накопители на хранение. Запасы гидролизного лигнина в России составляют десятки миллионов тонн, они сопоставимы с отходами лесопиления и деревообработки. Вопросы утилизации гидролизного лигнина – одни из наиболее важных в производстве различного рода продукции, где он является побочным остаточным продуктом, загрязняющим окружающую среду. Кроме того, в сульфитном производстве образуются растворы сульфитных лигнинов (лигносульфонатов), часть которых накапливается в лигнохранилищах, а часть уходит со сточными водами предприятия в реки и озера.

Лигносульфонат – продукт переработки растительного древесного сырья на ЦБК.

Лигносульфонаты — это общее название солей лигносульфоновых кислот. Являются природными водорастворимыми сульфопроизводными лигнина. Лигносульфонаты имеют высокую поверхностную активность, что позволяет использовать их в качестве анионных поверхностно-активных веществ в различных областях промышленности, в том числе и в дорожном строительстве.

Лесовозные дороги являются одной из важнейших составляющих лесопромышленной инфраструктуры, и одна из наиболее острых проблем лесопромышленного комплекса России – нехватка и низкое качество лесовозных дорог, во многих случаях вынуждающие вести заготовку древесины преимущественно в холодное время года. Одной из более эффективных и перспективных методик снижения стоимости строительства и ремонта лесных автомобильных дорог можно считать использование в дорожных покрытиях укрепленных грунтов.

Многочисленные исследования отечественных и зарубежных ученых показывают целесообразность применения цемента в качестве вяжущего для укрепления грунтов [1, 2]. Наиболее распространенными как в мире, так и на территории Российской Федерации являются глинистые грунты, сложность укрепления и широкого использования которых в дорожных одеждах связана с особенностями их физико-технических свойств. Поэтому повышение эффективности и качества глинистых грунтов, укрепленных портландцементом, является одной из актуальных задач, которая не может быть успешно решена без модификации химическими добавками, влияющими на структуру и свойства получаемого материала.

В настоящее время доказана техническая и экономическая эффективность устройства дорожных одежд со слоями из местных грунтов, укрепленных различными вяжущими [3]. Многолетние обследования эксплуатируемых участков дорог с основаниями из укрепленных грунтов позволяют утверждать, что такие материалы обладают высокими технико-экономическими и эксплуатационными качествами. Цементогрунтовые слои в дорожной одежде обеспечивают соответствующий нормативам водно-тепловой режим всей дорожной одежды, пониженное водонасыщение при устройстве земляного полотна, хорошую ровность покрытия, снижение колееобразования во всех слоях дорожной одежды и предотвращают появление усталостных трещин в дорожном покрытии [4].

В то же время известно, что конструктивные слои дорожной одежды из цементогрунта имеют существенный недостаток, заключающийся в образовании сетки трещин вследствие воздействия на них различного рода факторов. Такие трещины могут возникнуть не только из-за прилагаемых динамических и климатических нагрузок, но и из-за особенности структуры материала. При укреплении грунтов цементом применяют различные добавки с целью создания оптимальных условий твердения цемента и улучшения технологических свойств цементогрунтовых смесей, повышения

деформативных свойств цементогрунта и, как следствие, повышения прочности и долговечности изделий из этого материала, расширения количества видов грунтов, пригодных для укрепления, а также в целях экономии цемента.

Для улучшения деформативных свойств цементогрунта в мире используют различные полимерные добавки. Следует отметить, что зарубежные добавки использовать неэффективно ввиду их высокой стоимости, а применение существующих добавок отечественного производства не дает устойчиво выраженного эффекта. Поэтому возникает необходимость в разработке комплексной полимерной добавки отечественного производства, которая позволила бы улучшить физикомеханические свойства дорожного цементогрунта, повысить его деформативность и трещиностойкость, снизить стоимость дорожного полимерцементогрунта. Таким образом, актуальность постановки и решения данной проблемы представляется не только очевидной, но и необходимой. Несмотря на работы предшественников, выполненные в НИИ и вузах страны, проблема повышения качества лесовозных автомобильных дорог из укрепленных грунтов с применением отходов ЦБК не получила должного развития. Однако анализ отходов гидролизной промышленности свидетельствует о целесообразности их использования в строительстве лесовозных дорог, в том числе и по причине снижения расхода битума.

Список литературы

- 1 **Буланов, П. Е.** Модификация укрепленных портландцементом глинистых грунтов для дорожных одежд комплексной гидрофобно-пластифицирующей добавкой : автореф. дис. ... канд. техн. наук : 05–23–05 / П. Е. Буланов ; Казан. архит.-строит. ун-т. Казань, 2017. 20 с.
- 2 **Чельшева**, **Т. В.** Применение лигносульфонатов для укрепления и обеспыливания лесовозных автомобильных дорог / Т. В. Челышева // Известия вузов. Лесной журнал. 2001. № 5–6. С. 64–70.
- 3 **Чудинов**, С. А. Укрепленные грунты в строительстве лесовозных автомобильных дорог : [монография] / С. А. Чудинов. Екатеринбург : УГЛТУ, 2020. 174 с.
- 4 **Чудинов**, С. А. Повышение надежности лесовозных дорог в условиях изменения климата / С. А. Чудинов, О. Н. Байц // Проблемы безопасности на транспорте : материалы XI Междунар. науч.-практ. конф. (Гомель, 25–26 ноября 2021 г.). В 2 ч. Ч. 2 ; под общ. ред. Ю. И. Кулаженко. Гомель : БелГУТ, 2021. С. 46–48.