22.10.2020 14:33:51 4.20(ЦП-515) Страница 1 из 1

ПУ-29. Книга записи результатов проверки стрелочных переводов и глухих пересечений

Ограничение по дате

01.10.2020-15.10.2020

ПЧ-12

Кинель Кинель/7 парк Марка крестовины 1/9

Стр.пер.№ 54 типа правый

Раздел 1 | Agra до рення изика рення и произрем и про

Раздел 2												
Дата промеров	Средство измерения	Исполнитель	величина ординат в расстояниях, м, от корня остряка									
			в корне остряка	2	4	6	8	10	12	14	16	В конце переводной кривой
П: 08.10.20 11:37:11 - Б: 12.10.20 19:48:09	745		177.6	255.5	356.7	466.7	583.6	733.6	906.3	1099.7		1330.8

Рисунок 3 – Пример формы ПУ-29

В результате опытной эксплуатации ИИС КСИ было установлено, что концепция работы диагностического работа, установленного на маневровом локомотиве, показала свою работоспособность и эффективность. Она позволяет существенно сократить затраты на диагностику станционной инфраструктуры, проводя её в рамках штатной маневровой работы, получать неотложную информацию, требующую немедленного реагирования и устранения, а также осуществлять постоянный контроль стрелочных переводов.

Список литературы

- 1 Инструкция по текущему содержанию железнодорожного пути : утв. распоряжением ОАО «РЖД» № 2288/р от 14 ноября 2016 г. [Электронный ресурс]. Режим доступа : https://www.tdesant.ru/info/item/189https://pravo.by/document/?guid=12551&p0=C21600345&p1=1. Дата доступа : 26.09.2022.
- 2 **Михалкин, И. К.** Новые задачи и принципы построения системы диагностики и мониторинга инфраструктуры ОАО «РЖД» / И. К. Михалкин, О. Б. Симаков // Путь и путевое хозяйство. 2015. № 4. С. 9–11.
- 3 **Атапин, В. В.** Инновации в сфере контроля состояния стрелочных переводов / В. В. Атапин, А. А. Чекин, А. В. Баширов // Современные технологии. Системный анализ. Моделирование. 2021. № 2 (70). 128–138 с.

УДК 625.731

ДИСТАНЦИОННЫЙ КОНТРОЛЬ ТЕМПЕРАТУРНО-ВЛАЖНОСТНОГО РЕЖИМА ЗЕМЛЯНОГО ПОЛОТНА ЛЕСОВОЗНЫХ ДОРОГ В ЗОНАХ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ

С. А. ЧУДИНОВ, К. В. ЛАДЕЙЩИКОВ Уральский государственный лесотехнический университет, г. Екатеринбург, Российская Федерация

Проблема безопасности автомобильных дорог напрямую зависит от транспортно-эксплуатационных показателей покрытия дорожной одежды. Однако проблема обеспечения нормативных транспортно-эксплуатационных показателей покрытий автомобильных дорог в зонах многолетнемерзлых грунтов является актуальной, в особенности в условиях современного изменения климата [1].

В зонах распространения многолетнемерзлых грунтов существуют и эксплуатируются разные линейные сооружения, включая железнодорожные и автомобильные сети, а также лесовозные дороги и дороги других назначений.

Изменения климата в сторону потепления, приводит к тому, что конструкции линейных сооружений, подвергаются тепловому и радиационному солнечному воздействию больше, чем когда проектировались, аккумулируют тепло и воздействуют на грунты основания, физические свойства которых зависят от глубины залегания нулевых или отрицательных температур.

В широком смысле современная лесовозная дорога — это линейное сооружение, по которому перемещается груженное лесом транспортное средство, от места заготовки леса до места его переработки, в любое время года. Это расстояние может иметь десятки километров. Данная дорога состоит из отрезков разной протяжённости, разного конструктивного исполнения и проходит по разной местности.

Участки дорог, расположенные ближе к местам переработки леса, в большинстве случаев имеют твёрдое покрытие и пригодны для проезда гружёного лесом транспорта, круглогодично, так как в основном располагаются возле населённых пунктов. По мере приближения дороги к месту валки леса (чем дальше в лес, тем она более не проходимая в летний период) покрытие упрощается, появляются затопленные участки, образующиеся от колеи транспорта и заполненные атмосферными осадками.

Многокилометровый участок имеющий такую структуру: лесосека (участок валки леса) – лесовозный ус (временный лесовозный путь) – ветка (ответвление от магистрали) – магистраль (лесовозная дорога) – деревоперерабатывающее предприятие (конечная точка), предназначенный для транспортировки леса, может оказаться бесполезным при наличии лишь в одном месте непроходимого участка, образовавшегося в результате выпадения атмосферных осадков или наступившей зимней оттепели.

Для оперативной оценки и быстроты реакции в принятии решений на автомобильных дорогах, включая лесовозные дороги, всё чаще вводят геотехнический мониторинг насыпей земляного полотна и грунтов основания.

Опережающая информация о процессах, которые происходят в теле земляного полотна, даёт возможность оперативно принимать меры, вплоть до приостановки движения, выполнения опережающих ремонтов, тем самым поддерживая в целом транспортную лесовозную сеть в работоспособном состоянии.

Известно, что температура тела насыпи и влажность грунта насыпи разные в зависимости от сезона, но они разные и в одном сезоне в зависимости от места расположения участка дороги на местности. Гружёный транспорт, водно-тепловой режим местности, воздействуя на дорожное покрытие, по-разному деформируют его.

Получается, конструкция дорожной одежды одна, а деформируется по-разному. Вследствие различных деформаций, связанных с изменением климата, покрытие дороги разрушается не на всём протяжении, а местами (в определённых местах общего лесовозного пути). Как правило, это происходит в лесных массивах, в непосредственной близости от производства лесовалочных работ, и останавливает движение по лесовозному пути полностью.

В нашей стране теоретико-вероятностные подходы предупреждения деформаций земляного полотна для разных климатических зон изучены достаточно широко [2].

Реальная диагностика температуры и влажности тела насыпи, лесовозной дороги, включая зоны с многолетнемерзлыми грунтами, также существует в нашей стране и даёт возможность выполнять вывоз лесоматериалов круглогодично путем своевременных, превентивных и локально решаемых мер или ремонтов.

Беспроводные приборы для измерения влажности и температуры состоят из датчиков, закладываемых в тело насыпи (при строительстве) и сенсорного приёмника, обеспечивающего приём и передачу данных до 1,0 км диспетчеру (на персональный компьютер или телефон) [3].

По тому же принципу действуют и кабельные системы. Принцип действия приборов основан на измерении температуры грунта в реальном времени, выводе информации на экран прибора, считыванием и внесением оператором показаний в полевой журнал. Датчики могут быть расположены на расстоянии до 1,2 км от прибора (по максимальной длине кабеля), количество датчиков не ограничено.

Автоматизация геотехнического мониторинга включает в себя сбор измерений, её первичную обработку; сопоставление контролируемых показателей с программной базой, визуализацией результатов; хранение и передачу далее полученной информации.

Опережающие мероприятия, при получении достоверной информации о состоянии тела насыпи автомобильной дороги, в конечном счёте экономически более предпочтительны, чем капитальный ремонт участка дороги [4].

Рекомендации и обоснования конструктивно-технологических решений, для быстрого применения, разрабатываются заранее и могут включать [5]:

- отвод поверхностной воды от тела земляного полотна;
- очистку откосов от снежного покрова (для охлаждения тела насыпи);
- устройство на откосах насыпи каменной наброски для их охлаждения (в том числе для предотвращения перегрева тела насыпи в летнее время);
 - глубинное охлаждение оснований с помощью сезонно охлаждающих устройств (СОУ);
 - теплоизоляцию продольных водоотводных систем.

Температурно-влажностный режим грунтов, включая грунты, находящиеся в многолетнемерзлом состоянии, определяет их несущую способность; от него зависят особенности конструктивных решений не только при проектировании, но и при получении своевременной и достоверной информации; он определяет экономически выверенный способ содержания дороги и поддержания её в работоспособном состоянии.

Список литературы

- 1 **Чудинов, С. А.** Повышение надежности лесовозных дорог в условиях изменения климата / С. А. Чудинов, О. Н. Байц // Проблемы безопасности на транспорте : материалы XI Междунар. науч.-практ. конф. (Гомель, 25–26 ноября 2021 г.) : в 2 ч. Ч. 2 ; под общ. ред. Ю. И. Кулаженко. Гомель : БелГУТ, 2021 С. 46–48.
- 2 **Скрыльников, И. Г.** Проектирование и эксплуатация земляного полотна автомобильных дорог в районах распространения многолетнемерзлых грунтов (с использованием теории риска) : автореф. дис. ... канд. техн. наук : 05–23–11 / И. Г. Стрельников; ВолГАСУ. Волгоград, 2012. 22 с.
- 3 ОДМ 218.2.091-2017. Геотехнический мониторинг сооружений инженерной защиты автомобильных дорог/ Фед. дор. агентство. M., 2019.
- 4 **Чудинов, С. А.** Повышение эффективности строительства и эксплуатации лесовозных автомобильных дорог / С. А. Чудинов, Ю. О. Емельянова // Инновационное развитие техники и технологий наземного транспорта : сборник статей II Всерос. науч.-практ. конф. (Екатеринбург, 16 декабря 2020 г.). Екатеринбург : УрФУ, 2021. С. 30–31.
- 5 **Чудинов, С. А.** Адаптационные технологии в строительстве лесовозных дорог в условиях изменения климата / С. А. Чудинов // Вестник Марийского государственного технического университета. Сер. Лес. Экология. Природопользование. 2010. № 2 (9). С. 76–81.

УДК 624.138.41

ПРИМЕНЕНИЕ ЛИГНОСУЛЬФОНАТОВ ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ЛЕСОВОЗНЫХ АВТОМОБИЛЬНЫХ ДОРОГ

С. А. ЧУДИНОВ, Н. В. ЛАДЕЙЩИКОВ Уральский государственный лесотехнический университет, г. Екатеринбург, Российская Федерация

Безопасность эксплуатации автомобильных дорог зависит от их транспортно-эксплутационного состояния в течение всего срока службы. Особенно это важно для автомобильных дорог, эксплуатирующихся с высокими транспортными нагрузками, к которым относятся лесовозные автомобильные дороги. Обеспечение требуемых качественных показателей лесовозных автомобильных дорог в течение всего срока их службы является необходимым условием для бесперебойного функционирования лесозаготовительной отрасли и безопасной эксплуатации транспортной инфраструктуры. Для повышения качества лесовозных автомобильных дорог применяются различные эффективные технологии и дорожно-строительные материалы.

Лигнин (лат. lignum – дерево) – сложный природный полимер, входящий в состав растений, продукт биосинтеза. Лигнин – самый распространенный полимер на Земле после целлюлозы. В естественном состоянии в растениях лигнин связан с целлюлозой и образует с ней структуру, по-