## З ИНФОРМАЦИОННАЯ И ФУНКЦИОНАЛЬНАЯ БЕЗОПАСНОСТЬ СИСТЕМ АВТОМАТИКИ, ТЕЛЕМЕХАНИКИ И СВЯЗИ

УДК 621.314

## ДИАГНОСТИКА ТРАНСФОРМАТОРОВ НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ С ПОМОЩЬЮ ПРИБОРНОГО УЧЕТА ДАННЫХ И СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ

В. О. БЕЛЬКИН. И. Л. ГРОМЫКО

Белорусский государственный университет транспорта, г. Гомель

Неотъемлемым элементом при централизованном электроснабжении является трансформатор. Выход из строя силового трансформатора может привести к созданию аварийных ситуаций, перебоям электроснабжения, массовому недоотпуску продукции. Поэтому, контроль состояния трансформатора является важной задачей.

Основные неисправности силовых трансформаторов:

- 1 Межвитковые замыкания.
- 2 Местное замыкание пластин стали (пожар в стали).
- 3 Наличие примесей в трансформаторном масле.

К дополнительным неисправностям, относят:

- 1 Деформация магнитопровода.
- 2 Механическая деформация обмоток.

При выполнении опытов в трансформатор заблаговременно вводились поочередно все неисправности и затем проводились испытания. По результатам экспериментов было выявлено, что наиболее значимыми исходными данными для нейромоделирования являются следующие:

- температура на поверхности обмоток (при МКЗ средний градиент температуры в зоне МКЗ составил около 35  $^{\circ}$ C/мин);
  - отношение токов, напряжений и активных мощностей первичной и вторичной обмоток;
  - состав окружающего воздуха на наличие частиц задымления от лака и бумажной изоляции.

Исследование дополнительных испытаний позволяет выявить наиболее значимо изменяющиеся параметры экспериментально. При деформации магнитопровода наблюдается увеличение потерь холостого хода и уменьшение активного сопротивления Т-образной схемы замещения на холостом ходу. А при механической деформации обмоток: увеличивается индуктивность и активное сопротивление обмоток.

На рисунке 1 представлено влияние диагностических испытаний для увеличения срока службы трансформатора.

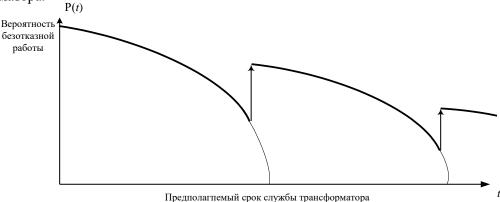



Рисунок 1 — Влияние диагностических испытаний и корректировочные меры для увеличения срока службы трансформатора

Сверточная нейронная сеть, принимая на свой вход данные с первичных преобразователей, позволит в режиме реального времени анализировать информацию и судить о том или ином состоянии электрической машины, не выводя трансформатор из работы, а также с вероятностью 90 % прогнозировать остаточный ресурс. Это предоставляет дополнительные возможности в обеспечении низкого уровня безаварийности и соблюдения режимов бесперебойного электроснабжения. При этом затраты на внедрение данной технологии нейромоделирования относительно невелики (например, применение одноплатных компьютеров), а эффективность от применения будет существенной.

Состояние изоляции обмоток трансформатора можно оценить, измеряя всего несколько параметров: сопротивление изоляции постоянному току, коэффициенты абсорбции DAR, поляризации PI и диэлектрического разряда DD. Значения этих величин позволяют обнаружить расслоение и загрязнение, определить ток утечки, степень влажности и старения, т.е. сделать вывод о пригодности изоляции к дальнейшей эксплуатации.

В настоящее время существует три метода определения степени увлажненности трансформаторов: «емкость – время», емкостно-температурный метод, метод частотной зависимости емкости.

При испытании изоляции, согласно ТКП 181-2009, сопротивление измерялось мегаомметром MS5201 (на напряжение 1000 В). Характерными временными отсечками при выполнении измерений сопротивления изоляции обмоток являлись следующие: 15 секунд после начала измерения ( $R_{15}$ ); 60 секунд ( $R_{60}$ ); 600 секунд ( $R_{600}$ ).

Данные измерения необходимы для определения действительного сопротивления (R60), а также коэффициента абсорбции и индекса поляризации.

В таблице 1 приведены критерии оценки качества изоляции, основанные на результатах измерений индекса поляризации и коэффициента абсорбции. В таблице 2 приводятся частично результаты оценки качества изоляции.

Таблица 1 – Оценка качества изоляции

| Индекс поляризации | Коэффициент абсорбции | Качество изоляции |  |
|--------------------|-----------------------|-------------------|--|
| <1                 | <1.25                 | Опасное           |  |
| 1–2                | <1,23                 | Несоответствующее |  |
| 2–4                | 1,25–1,6              | Хорошее           |  |
| >4                 | >1,6                  | Отличное          |  |

Таблица 2 – Результаты измерений для оценки качества изоляции

| Сутки | $R_{15}$ | $R_{60}$ | $R_{600}$ | DAR      | PI      |
|-------|----------|----------|-----------|----------|---------|
|       | МОм      |          |           | DAK      | PI      |
| 0     | 481      | 798      | 2000      | 1,659044 | 2,50627 |
| 1     | 273      | 491      | 1133      | 1,798535 | 2,30754 |
| 2     | 140      | 245      | 519       | 1,750000 | 2,11837 |
| 3     | 95       | 180      | 318       | 1,894737 | 1,76666 |
| 4     | 86       | 133      | 232       | 1,546512 | 1,74436 |
| 5     | 58       | 104      | 140       | 1,793103 | 1,34615 |
| 6     | 55       | 65       | 81        | 1,181818 | 1,24615 |
| 7     | 61       | 66       | 60        | 1,081967 | 0,90909 |
| 8     | 41       | 47       | 50        | 1,146341 | 1,06383 |
| 9     | 37       | 40       | 36        | 1,081081 | 0,90000 |
| 10    | 32       | 30       | 29        | 0,937500 | 0,96667 |

С помощью программы *Mathlab* на основе Т-образной схемы замещения апробирован и верифицирован инструментарий анализа коротких замыканий обмоток и неисправностей магнитопровода для дальнейшего обучения сверточных нейронных сетей.

## Список литературы

1 **Пехота, А. Н.** Диагностика трансформаторов с помощью сверточных нейронных сетей / А. Н. Пехота, В. Н. Галушко, И. Л. Громыко // Энергоэффективность. -2021. -№ 2. -C. 30–36.