МИНИСТЕРСТВО ТРАНСПОРТА И КОММУНИКАЦИЙ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Кафедра «Неразрушающий контроль и техническая диагностика»

В. В. БУРЧЕНКОВ, О. В. ХОЛОДИЛОВ

ПРЕОБРАЗУЮЩИЕ И ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ ТЕЛЕМЕТРИЧЕСКИХ СИСТЕМ

Учебно-методическое пособие для студентов технических специальностей

Гомель 2015

МИНИСТЕРСТВО ТРАНСПОРТА И КОММУНИКАЦИЙ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Кафедра «Неразрушающий контроль и техническая диагностика»

В. В. БУРЧЕНКОВ, О. В. ХОЛОДИЛОВ

ПРЕОБРАЗУЮЩИЕ И ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ ТЕЛЕМЕТРИЧЕСКИХ СИСТЕМ

Одобрено методической комиссией механического факультета в качестве учебно-методического пособия для студентов технических специальностей

Гомель 2015

Рецензент – профессор кафедры «Автоматика и телемеханика», кандидат технических наук *Н. К. Модин* (УО «БелГУТ»)

Бурченков, В. В.

Б91 Преобразующие и функциональные элементы телеметрических систем : учеб.-метод. пособие / В. В. Бурченков, О. В. Холодилов; М-во транспорта и коммуникаций Респ. Беларусь, Белорус. гос. ун-т трансп.

– Гомель : БелГУТ, 2015. – 139 с. ISBN 978-985-554-378-8

Приведены основные сведения из теории и литература, рекомендации при подготовке к практическим занятиям и задания по расчётам и проектированию узлов и элементов систем телеметрии по дисциплине «Теория преобразования и передачи измерительной информации».

Предназначено для студентов специализации 1-37 02 02 02 «Неразрушающий контроль и техническая диагностика на железнодорожном транспорте».

УДК 621.3.083.7 (075.8) ББК 32.968

© Бурченков В. В., Холодилов О. В., 2015

ISBN 978-985-554-378-8

СОДЕРЖАНИЕ

П	ринятые сокращения	5
B	ведение	6
1	Информационные характеристики измерительных систем	/
	1.1 Параметры источников цифрового сообщения	7
	1.2 Временные характеристики сигналов	10
	1.3 Уровни передачи для линий связи	11
	1.4 Физические параметры каналов связи	12
	1.5 Частотные характеристики измерительных преобразователей	14
2	Диагностические характеристики телеметрических систем	18
	2.1 Выбор измерительных средств для диагностики	18
	2.2 Классификация видов и методов измерений параметров устройств	
	телеметрии	20
	2.3 Автоматизация процессов измерения параметров	21
	2.4 Информационно-измерительные системы и перспективы их	
	применения	23
	2.4.1 Общая характеристика информационно-измерительных систем	23
	2.4.2 Основные требования к диагностическому обеспечению	25
	2.5 Особенности и задачи технического диагностирования систем	
	железнодорожной автоматики	26
	2.6 Диагностические тесты и алгоритмы определения состояния	•
	телеметрических систем	28
	2.7 Прогнозирование технического состояния телеметрических систем	31
3	Принципы построения цифровых устройств телеметрии	39
	3.1 Структурная схема многоканальной системы телеизмерений	39
	3.2 Счетчики импульсов	41
	3.3 Шифраторы и дешифраторы кодовых комбинаций	45
	3.3.1 Шифраторы	45
	3.3.2 Дешифраторы	47
	3.4 Распределители импульсов	50
	3.5 Мультиплексоры и демультиплексоры	52
	3.6 Радиопередатчики автономных измерительных систем	53
	3.7 Современные системы многоканальной компьютерной регистрации	
	сигналов	55
4	Программное обеспечение схемотехнического моделирования	65
	4.1 Общие сведения о программе моделирования Electronics Workbench	

и Multisim	65	
4.2 Программная среда Multisim	66	
4.3 Компоненты программы	69	
4.4 Моделирование электрических схем	82	
4.5 Виртуальные измерительные приборы	85	
4.6 Интеграция электрических схем Multisim с приборами National		
Instruments LabVIEW	95	
4.7 Создание прототипов виртуальных трехмерных компонентов	96	
4.8 Программы Postprocessor и Graphes для построении графиков	99	
4.9 Упражнения для изучения программы моделирования Multisim	102	
5 Задания для практических занятий	112	
Список использованной и рекомендуемой литературы	120	
Приложение А Таблица значений функций η[P(α _к)]	122	
Приложение Б Исходные данные для расчета информационных		
характеристик цифровых источников сообщений	123	
Приложение В Таблица частот и длительности исследуемых сигналов	138	
Приложение Г Исходные данные для расчёта предельной мощности		
сигнала, передаваемого по каналу с заданными параметрами	139	

ПРИНЯТЫЕ СОКРАЩЕНИЯ

АБ – автоматическая блокировка

АПС – автоматическая переездная сигнализация

ГАЦ – горочная автоматическая централизация

ДК – диспетчерский контроль

ДСП – дежурный по станции

ДЦ – диспетчерская централизация

ЖА – железнодорожная автоматика

ИС – источник сообщения

КС – канал связи

ЛАЧХ – логарифмическая амплитудно-частотная характеристика

ЛВС – локальная вычислительная сеть

ЛФЧХ – логарифмическая фазо-частотная характеристика

ПК – персональный компьютер

ПС – получатель сообщения

РТУ – ремонтно-технологический участок

СПД – система передачи данных

ТИ – телеизмерение

ТР – телерегулирование

ТУ – телеуправление

ЭЦ – электрическая централизация

введение

В условиях интенсификации работы железнодорожного транспорта значимость современных аппаратных средств неразрушающего контроля и технической диагностики для обеспечения безопасности перевозочного процесса стремительно возрастает. Телеизмерения, как область технических наук, одновременно является частью измерительной техники и частью широким внедрением многообразным телемеханики. В связи с И телеизмерений телемеханики целом. масштаб применением И в используемых новых методов и технических средств преобразования, передачи и распределения измерительной информации значительно увеличился.

Телемеханика в наиболее общем виде включает в себя [1]:

- телеуправление (ТУ) объектами, системами, машинами;

– телесигнализацию (TC) по результатам контроля состояния объекта управления, механизмов и машин, имеющих, как правило, два или три устойчивых состояния;

 телеизмерения (ТИ) – контроль состояния объектов, механизмов и машин, которые характеризуются множеством одинаковых или различных параметров и непрерывно изменяющейся аналоговой выходной величины;

– системы телерегулирования (ТР), являющиеся комбинированными, куда входят в качестве подсистем ТУ и ТИ.

В системах ТИ применяются методы и технические средства инструментальных измерений состояния объектов контроля, а также приборные и аппаратные средства обработки и передачи на расстояние результатов этих измерений. В конечном итоге ТИ целесообразно определять как область автоматических измерений, т. е. функционирование систем без участия операторов или человека, с передачей на расстояние результатов измерений по каналам связи.

В ТИ, как в области измерений, применятся следующие методы и технические средства автоматических измерений:

1) первичный съём информации, осуществляемый измерительными преобразователями (датчиками), автоматически преобразующими измеряемые параметры в один из унифицированных параметров;

2) преобразование и согласование сигналов, выполняемые преобразующими и вычислительными устройствами, которые должны иметь высокостабильные коэффициенты передачи и небольшую, обычно нормируемую погрешность;

3) кодирование или преобразование выходных параметров, производимое на передающей стороне для уменьшения влияния помех на погрешность измерений путем замены на параметр мало подверженный влиянию затухания или помех в канале связи. Соответственно на приёмной стороне применяются декодирующие устройства и обратный преобразователь;

4) использование многоканальных систем передачи сигналов телеметрии, которое осуществляется из экономических соображений, вызванных тем, что стоимость канала связи значительно превышает стоимость устройств ТИ; один канал связи, в большинстве случаев, используется для передачи результатов многих телеизмерений или для передачи других сигналов телемеханики;

5) автоматическое считывание информации, производимое без непосредственного участия человека в процессе сбора и передачи измерительной информации.

Основные цели практических занятий:

– закрепление теоретического материала по дисциплине «Теория преобразования и передачи измерительной информации»;

 получение навыков по схемотехническому моделированию, инженерному проектированию и расчету параметров телеметрических систем; анализу исходных данных и автоматической обработке результатов измерений.

– приобретение практического опыта моделирования датчиков и узлов систем телеизмерений, а также освоение методики исследования характеристик измерительных преобразователей и каналообразующей аппаратуры, используемых в телеметрических системах мониторинга технического состояния подвижного состава.

1 ИНФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

1.1 Параметры источников цифрового сообщения

Современные системы телеизмерений обычно используют конечное множество возможных сообщений с различными вероятностями их возникновения. Вероятность появления события тесно связано с количеством информации. В сообщении о событии большой вероятности содержится меньше информации, чем в сообщении с маловероятным событием. Если сообщение несет достоверное событие, т.е. его вероятность равна единице, то оно не несет никакой информации и нет смысла передавать его по каналу связи [2].

Неожиданность событий является результатом неопределенности, и чем она больше, тем больше информации содержит сообщение.

Вероятность события является мерой его неожиданности и определяет информационную содержательность события.

Ансамбль возможных сообщений представляется конечной схемой вида А:

$$A = \begin{cases} a_1; a_2; \dots; a_n; \\ P(a_1); P(a_2); \dots; P(a_n), \end{cases}$$

в котором $a_1, a_2, ..., a_n$ – знаки ансамбля; $P(a_1)$; $P(a_2)$; ...; $P(a_n)$ – вероятности появления этих знаков в сообщениях.

Ансамбль цифрового сообщения содержит 10 знаков, а ансамбль букв русской азбуки – 33 знака.

Из схемы A следует, что вероятность появления знака $a_1 \rightarrow P(a_1)$; $a_2 \rightarrow P(a_2)$. Тогда в знаке a_i будет содержаться информация, определяемая для сообщений в двоичном исполнении следующим выражением:

$$I(a_i) = \log_2 \frac{1}{P(a_i)}.$$

Из этого выражения следует, что в ансамбле *А* разные знаки несут разное количество информации.

Энтропия – это количество информации, содержащаяся в среднем в одном знаке сообщения. Она характеризует меру неопределенности совокупности знаков сообщения, составляющих конечную схему A, содержащую знаки алфавита a_k и вероятности их появления на выходе источника $P(a_k)$.

Энтропия источника сообщения будет максимальной в том случае, если все знаки сообщения будут равновероятны и независимы:

$$H_{\rm max} = \log_2 K.$$

В остальных случаях

 $H < \log_2 K$.

Поэтому количество информации, приходящееся на один знак, обычно меньше того количества информации, которое мог бы этот знак нести. При этом информационная нагрузка на знак часто оказывается меньше максимально возможной. Если знаки *К*-значного источника встречаются на выходе не равновероятно и независимо друг от друга, то энтропия рассчитывается по формуле, представленной в виде табулированной функции:

$$H=\sum_{k=1}^k\eta P(a_k)\,,$$

для которой значения $\eta[P(a_k)]$ приведены в приложении А.

Степень недоиспользования информационных возможностей сообщения характеризуется избыточностью, т. е. наличием сообщений большего числа знаков, чем это минимально необходимо для передачи определенного количества информации.

Численно избыточность χ определяется относительной разностью максимально возможной и реальной энтропии:

$$\chi = \frac{H_{\text{max}} - H}{H_{\text{max}}} = 1 - \frac{H}{H_{\text{max}}} = 1 - \frac{H}{\log_2 k} \cdot$$

Коэффициент сжатия *k* определяется отношением реальной энтропии к максимально возможной:

$$k = \frac{H}{H_{\text{max}}}$$

Коэффициент сжатия k показывает, насколько уже сжато сообщение.

Избыточность χ изменяется от 0 до 1. Ее численное значение показывает, насколько можно сократить объем сообщения без потери информации за счет более рационального использования знаков источника сообщения. Если, например, $\chi = 0,2$, то это означает, что после устранения избыточности объем сообщения уменьшается на 20 %.

Количество информации, содержащейся в цифровом сообщении,

$$I = HC$$
,

где *H* – энтропия источника, бит/знак;

С-общее количество знаков в сообщении.

1.2 Временные характеристики сигналов

Для передачи аналоговой информации в дискретном виде используются преобразования, основанные на теореме В. А. Котельникова.

Поскольку дискретные сигналы широко применяют в настоящее время сообщений, при передаче многие реальные сигналы являются а непрерывными, то важно знать: можно ли непрерывные сигналы представлять с помощью дискретных; можно ли указать условия, при которых такое представление оказывается точным. Ответы на эти вопросы дает доказанная в 1933 г. советским ученым В. А. Котельниковым теорема, являющаяся одним из фундаментальных результатов теоретической радиотехники: если непрерывный сигнал u(t) имеет ограниченный спектр и наивысшая частота в спектре меньше, чем $f_{\rm B}$ (Ги), то сигнал u(t)полностью определяется последовательностью своих мгновенных значений (отсчетов) в дискретные моменты времени, отстоящие друг от друга не более чем на $1/(2f_{\rm B})$ секунд.

Согласно этой теореме любую аналоговую информацию с ограниченным спектром можно представить дискретными отсчётами без потери информации при обратном преобразовании. Спектром сигнала называется совокупность гармонических колебаний, на которые может быть разложен данный сигнал. Шириной спектра называется полоса частот, в которой наблюдаются гармонические колебания, составляющие данный сигнал.

Исходная функция прямоугольного импульса имеет вид, приведенный на рисунке 1.

Рисунок 1 – Функция прямоугольного импульса

Аналитическое выражение для этой функции имеет вид

$$U(t) = \begin{cases} U_0 \text{ при } 0 \le t \le t_{\mu}; \\ 0 \text{ при } t > t_{\mu}. \end{cases}$$

При этом интервал дискретизации определяется из соотношения

$$\Delta t = \frac{1}{2f_{\rm B}}.$$

Вместо непрерывного сообщения, согласно теореме Котельникова, можно определить импульсы, амплитуда которых равна мгновенным значениям сообщений. Для передачи сообщения с ограниченным спектром предполагается известными нижняя $f_{\rm H}$ и верхняя $f_{\rm B}$ частоты этого сообщения.

Для повышения надежности множитель знаменателя 2 заменяется множителем из интервала 2,3–2,4. Для практических расчётов значение множителя принимается равным 2,35.

Число импульсов для полного описания аналогового видеоимпульса

$$N = 2f_{\rm B}t_{\rm H}$$
,

где $t_{\rm H}$ – длительность видеоимпульса, с.

1.3 Уровни передачи для линий связи

В системах телеметрии и измерительной технике, кроме Международной системы единиц, пользуются внесистемными единицами, а также различными специальными определениями и понятиями.

Существуют основные номинальные значения нагрузочных, входных и выходных сопротивлений аппаратуры телеметрических измерений. Например, $R_{\rm H} = 600$ Ом – для телеметрии тонального диапазона; $R_{\rm H} = 75$ Ом – для высокочастотного диапазона передачи пакетов информации по коаксиальному кабелю; $R_{\rm H} = 50$ Ом – для передачи информации в пакетном виде по локальным вычислительным сетям ЛВС.

Также существуют уровни передачи, которые позволяют произвести оценку напряжений, токов и мощностей в единицах передачи – децибелах или неперах.

Примечание – Децибел (дБ) – безразмерная единица, показывающая соотношение различных величин одинаковой природы по десятичной логарифмической шкале. Бел соответствует десятикратному увеличению мощности (1Б равен увеличению мощности в 10 раз, 2Б – в 10², 3Б – в 10³ и т. д.). Если

использовать натуральный логарифм, то отношение будет выражено в единицах «непер» (Нп).

В технике передачи сигналов различают абсолютные, относительные и измерительные уровни передачи.

Уровнями передачи по мощности, напряжению или току называются выраженные в логарифмическом масштабе отношения P_x , U_x , или I_x в какойлибо точке цепи (на выходе четырехполюсника или линии связи) к аналогичным величинам P_0 , U_0 , или I_0 , принятым для сравнения (за начало отсчета или на входе четырехполюсника).

Относительные уровни передачи по мощности, напряжению и току определяются по формулам

$$P_P = 10 \lg \frac{P_x}{P_0}; P_U = 20 \lg \frac{U_x}{U_0}; P_I = 20 \lg \frac{I_x}{I_0};$$

где *P_x*, *U_x*, *I_x* – соответственно мощность, напряжение и ток в рассматриваемой точке *X* двухпроводной цепи;

*P*₀, *U*₀, *I*₀ – величины, соответственно мощности, напряжения и тока, принятые за единицу сравнения, т. е. по отношению, к которым определяются уровни в рассматриваемой точке *X*.

На рисунке 2 представлена схема передачи сигналов от генератора Γ с параметрами $P_0 = U_0 I_0$ по линии связи на сопротивление нагрузки с параметрами $P_x = U_x I_x$.

Рисунок 2 - Схема включения генератора на согласованную нагрузку

Уровни передачи называются абсолютными, если за единицу сравнения на входе линии связи приняты эталонные значения мощности, напряжения или тока ($P_{\text{эт}} = 1 \text{ мBT}$; $U_{\text{эт}} = 0,775 \text{ B}$; $I_{\text{эт}} = 1,29 \text{ мA}$ при условии, что $R_{\text{H}} = 600 \text{ См}$).

1.4 Физические параметры каналов связи

В типовой структурной схеме передачи информации предполагается наличие источника сообщения (ИС), канала связи (КС) и получателя сообщения (ПС).

Для согласования параметров канала связи с источником и получателем сообщения вводятся понятия физического объёма сигнала источника сообщения, физического объема сигнала помех и физического объёма канала связи.

Под физическим объёмом сигнала источника сообщения понимают произведение трёх его физических характеристик:

$$V_{\rm c} = F_{\rm c} T_{\rm c} D_{\rm c},$$

где *F*_c – полоса частот передаваемого сообщения;

*T*_с – длительность передаваемого сообщения;

D_c – динамический диапазон уровней сигнала по мощности сообщения, дБ,

$$D_{\rm c} = 10 \, \log \frac{P_{\rm max}}{P_{\rm min}}$$

где P_{max} , P_{min} – максимальное и минимальное значения мощности реализации сигнала длительностью T_{c} , полученное усреднением по времени.

Под физическим объёмом канала связи понимается произведение

$$V_{\kappa} = F_{\kappa}T_{\kappa}D_{\kappa},$$

где *F*_к – полоса пропускаемых каналом связи частот;

- *T*_к время работы канала;
- D_к динамический диапазон уровней сигналов пропускаемых каналом с допускаемыми искажениями, дБ

$$D_{\kappa} = \log_2 \left(1 + \frac{P_{\rm c}}{P_{\rm m}} \right),$$

где *P*_c, *P*_ш – уровни мощности полезного сигнала и шума.

Объём канала связи может быть выражен через пропускную способность канала, дБ:

$$V_{\kappa} = C_{\kappa}T_{\kappa} = T_{\kappa}F_{\kappa}\log_{2}\left(1 + \frac{P_{c}}{P_{m}}\right).$$

Рисунок 3 – Графическая интерпретация физического объема канала связи и источника сообщения

Для передачи сигналов с объёмом V_c без искажений по каналу связи необходимо, чтобы источник сообщения и канал связи были согласованы, т. е. должно выполняться неравенство $V_{\kappa} \ge V_c$.

Это возможно при соблюдении условий $T_{\kappa} \leq T_{\kappa}; F_{c} \leq F_{\kappa}; D_{c} \leq D_{\kappa}$.

В этом случае объем сигнала ИС полностью «вписывается» в объем канала, что хорошо графически иллюстрируется на рисунке 3.

Из понятия объёма канала следует, что его можно разделить для передачи нескольких сообщений одновременно [3]. Из рисунка 3 видно, что на части можно разделить полосу частот, что соответствует частотному уплотнению канала (можно использовать три частотных диапазона: $0 - f_1, f_1 - f_2, f_2 - f_3$. Также можно разделить время работы канала, что соответствует временному уплотнению: $0 - t_1, ..., t_1 - t_2, t_2 - t_3$. На части можно разделить и динамический диапазон канала: $0 - d_1, d_1 - d_2, d_2 - d_3$ (рисунок 4, *a*, *б*, *в*).

Рисунок 4 – Методы организации многоканальной связи

Физический объём ПС рассчитывается с учетом физических объёмов канала связи и сигналов помехи. Для «белого» шума, имеющего равномерную спектральную плотность мощности G_к, можно записать:

$$P_{\rm III} = G_{\rm K} F_{\rm K}$$

Подставляя это выражение в формулу для V_к, можно преобразовать полученное уравнение для вычисления искомого значения P_c.

1.5 Частотные характеристики измерительных преобразователей

Частотные характеристики находят широкое применение при анализе схемных узлов телеметрических систем. Различают амплитудные, фазовые и амплитудно-фазовые частотные характеристики отдельных звеньев и систем в целом. Если на вход усилителя подать гармоническое воздействие (рисунок 5), то на его выходе возникает гармонический сигнал той же частоты, но с другой амплитудой и фазой, которые будут зависеть от частоты входного сигнала. Подавая на вход гармонические воздействия постоянной амплитуды и разной частоты, получим частотные характеристики системы [4].

Амплитудная частотная характеристика – зависимость отношения амплитуды $A_{\text{вых}}(\omega_i)$ колебаний гармонического воздействия на выходе к амплитуде $A_{\text{вх}}(\omega_i)$ колебаний на его входе от частоты колебаний ω_i :

$$K(\omega_i) = \frac{A_{\text{\tiny Bbix}}(\omega_i)}{A_{\text{\tiny RV}}(\omega_i)}$$

Фазовая частотная характеристика отражает зависимость разности фаз между входными и выходными колебаниями от частоты колебаний:

Рисунок 5 – Характеристика гармонического сигнала усилителя

Задавая различные частоты входному гармоническому воздействию получают в результате серию точек, по которой строят частотные характеристики:

$$K(\omega) = f(\omega)$$
 и $\varphi(\omega) = f(\omega)$.

Амплитудно-фазовую характеристику строят по амплитудной и фазовой характеристикам. С этой целью на графике фазовой характеристики для определённой частоты ω находят значение фазы $\varphi(\omega)$, откладывают его в виде угла от горизонтальной оси (по часовой стрелке, если угол отрицательный, и против часовой стрелки, если угол положительный). На прямой, проведённой под этим углом, откладывают значения амплитуды $K(\omega)$, взятые из графика амплитудной характеристики при той же частоте, и

получают точку характеристики для ω . Затем аналогичным образом находят точки для других частот, соединив которые, получают кривую амплитуднофазовой характеристики. Таков путь экспериментального определения экспериментальных характеристик. Если в выражение передаточной функции звена подставить $p = j\omega$, то получим выражение амплитуднофазовой характеристики или частотной функции, представленное на комплексной плоскости в виде геометрической суммы вещественной $P(\omega)$ и мнимой $jQ(\omega)$ частей:

$$W(j\omega) = P(\omega) + jQ(\omega)$$
.

Амплитудная характеристика определяется как

$$K(\omega) = \sqrt{P^2(\omega) + Q^2(\omega)} ,$$

а фазовая –

$$\varphi(j\omega) = \operatorname{arctg}\{Q(\omega)/P(\omega)\}.$$

Подставляя в последние три формулы значения ω от 0 до ∞ строят амплитудную, фазовую и амплитудно-фазовую частотные характеристики отдельных звеньев и системы в целом.

Значительное число измерительных преобразователей может быть представлено апериодическим звеном первого порядка, передаточная функция которого имеет вид

$$W(p) = \frac{k}{1+Tp},$$

где *k* – коэффициент усиления звена,

T – постоянная времени,

p – оператор Лапласа.

Заменяя p на $j\omega$ в этом выражении, найдём вещественную P и мнимую Q части передаточной функции:

$$W(j\omega) = \frac{k}{1+Tj\omega} = \frac{k(1-Tj\omega)}{(1+Tj\omega)(1-Tj\omega)} = \frac{k}{1+\omega^2 T^2} - j\frac{kT\omega}{1+\omega^2 T^2};$$
$$P(\omega) = \frac{k}{1+\omega^2 T^2}; \quad Q(\omega) = -\frac{kT\omega}{1+\omega^2 T^2}.$$

Тогда выражения для амплитудной и фазовой характеристик примут вид

$$K(\omega) = \frac{k}{\sqrt{T^2 \omega^2 + 1}}$$
, a $\varphi(\omega) = -\operatorname{arctg}(\omega T)$.

Для инженерных расчётов более удобно амплитудную и фазовые характеристики изображать в логарифмическом масштабе.

Логарифмической амплитудно-частотной характеристикой L(ω) называется зависимость модуля частотной характеристики, изображённой в логарифмическом масштабе, от частоты:

$$L(\omega) = 20 \lg |W(j\omega)| = 20 \lg K(\omega).$$

При построении логарифмических характеристик частоты по оси абсцисс откладываются в логарифмическом масштабе в декадах (1–10; 10–100; 100–1000). Считают, что частоты ω_2 и ω_1 отличаются на декаду, если (ω_2/ω_1) = 10. Величина $L(\omega)$ измеряется в децибелах (дБ): 1 дБ = 0,1 Б.

Так как характеристика $K(\omega)$ является отношением не мощностей, а выходной и входной координат, то увеличение этого отношения в 10 раз соответствует увеличению отношения мощностей в 100 раз, т.е. 2Б или 20 дБ. Поэтому в последнем выражении в правую часть введён множитель 20. Следует иметь в виду некоторые соотношения: lg1 = 0, lg10 = 1 и 20lg10 = 20 дБ; lg2 = 0,3 и 20lg2 = 6 дБ.

Построение логарифмической амплитудно-частотной характеристики рассмотрим на примере апериодического звена. Характеристику получают, логарифмируя выражение

$$K(\omega) = \frac{k}{\sqrt{T^2 \omega^2 + 1}},$$

T. e. $L(\omega) = 20 \lg K - \lg \sqrt{T^2 \omega^2 + 1}$.

Строят характеристику в прямоугольной системе координат. По оси абсцисс откладывают угловую частоту в логарифмическом масштабе lg ω , а по оси ординат – равномерно децибелы. Ось абсцисс проходит через ноль 0 оси ординат, что соответствует $K(\omega) = 1$, т. к. lg1 = 0. Поскольку значение $\omega = 0$ находится на оси абсцисс слева в бесконечности (lg0 = $-\infty$), ось ординат проводят так, чтобы она пересекла ось абсцисс в точке, справа от которой должна лежать исследуемая часть логарифмической амплитудной характеристики. Последнее выражение состоит из двух частей. Первая является постоянной, не зависящей от частоты величиной, и представляет собой характеристику безынерционного звена. Вторая зависит от частоты, и поэтому её значения нужно вычислять как функцию частоты.

Логарифмическую фазочастотную характеристику строят также в прямоугольной системе координат, откладывая по оси абсцисс частоту в логарифмическом масштабе, а по оси ординат – фазу в угловых градусах.

Пользуясь правилами эквивалентного преобразования, можно любую сложную схему привести к простой, одноконтурной. После размыкания замкнутой системы, по выражениям передаточных функций разомкнутой и замкнутой системы можно построить амплитудные и фазовые частотные характеристики и по ним вести анализ работы системы.

2 ДИАГНОСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕЛЕМЕТРИЧЕСКИХ СИСТЕМ

2.1 Выбор измерительных средств для диагностики

Под **диагнозом** телеметрических устройств понимается определение состояния, в котором они находятся в данный момент времени [5]. Процесс диагностирования выполняется обслуживающим персоналом. Он сводится к определению состояния элементов, устройств и измерительных систем путем анализа результатов количественного и качественного сопоставлений параметров, полученных при технологических измерениях, с необходимыми значениями, указанными в нормативных документах.

Для объективного определения состояния указанных устройств в первую очередь необходимо получить фактические значения параметров с минимальной погрешностью, во вторую – четко представлять необходимый перечень их нормативных значений, в третью – иметь достаточную квалификацию обслуживающего персонала.

Измерить значение параметра, значит, определить методом физического сравнения, сколько раз в ней содержится величина, принятая за единицу [6]. В то же время при выполнении измерений из-за несовершенства измерительных средств и методов истинное значение параметров остается неизвестным, а в процессе измерений можно лишь с определенной степенью точности приближаться к ним. При техническом обслуживании элементов, устройств и измерительных систем используются разнообразные измерительные приборы, начиная от амперметров, вольтметров, омметров, индикаторов тока и до сложных измерительных комплексов, включающих испытательные стенды и установки.

Анализ многолетних сведений о неисправностях и отказах устройств телеметрии свидетельствует, что они носят одиночный или кратный характер, а также могут быть устойчивыми, временными, перемежающимися и комплексными. Это накладывает определенные требования к достоверности значений параметров, полученных в результате измерений.

Отклонение результатов измерений от истинных значений, как известно, называется погрешностью. **Погрешность измерений** может быть выражена в абсолютных и относительных единицах.

По источникам возникновения погрешности измерений подразделяются на инструментальные и методические, а по характеру – на систематические, случайные и грубые (промахи).

Погрешность средств измерений зависит от условий их использования и подразделяется на *основную* и *дополнительную*. В тех случаях, когда погрешность не зависит от значения измеряемой величины, т.е. постоянна во всем диапазоне измерений, то она называется аддитивной. В тех же измерительных погрешность средств случаях, когда изменяется значению измеряемой величины, пропорционально она называется мультипликативной. Эти погрешности у большинства измерительных средств. используемых при техническом обслуживании **v**стройств телеметрии, как правило, присутствуют одновременно [7, 8].

Порядок и особенности использования измерительных средств при автоматическом диагностировании устройств телеметрии описаны в соответствующих нормативных документах. К числу таких документов, например, относятся технологические карты обслуживания устройств, приведенные специальном документе пол названием в «Автоматизированная система контроля технического состояния подвижного состава АСК ПС. Технология обслуживания». В этом документе оговорены типы и модификации измерительных средств, рассмотрены измерительные схемы и последовательность выполнения профилактических измерений. При разработке таких технологических карт в значительной мере учтены возможные погрешности процессов измерений и измерительных средств.

К недостаткам технологических карт следует отнести то, что в них не приводится порядок и особенности выполнения аварийных измерений при неисправностях и отказах измерительных устройств.

Особую роль, особенно при выполнении аварийных измерений, играет правильный выбор типа измерительного средства в зависимости от измеряемого параметра, температуры окружающей среды, влажности, категории защищенности от электрических и магнитных полей и т.д. Полное представление о возможностях и особенностях измерительного средства можно получить из технического описания и паспорта. В то же время основную информацию, необходимую при выборе измерительного средства, можно получить из специальной маркировки на шкале и частично на лицевой панели измерительного средства. Так, на приборах, используя условные обозначения, указывают [8]:

– род измеряемой величины (сопротивление, напряжение, ток, и т. д.);

- систему и класс точности прибора;

группу в зависимости от условий применения (А – для работы в сухих отапливаемых помещениях; Б – в закрытых неотапливаемых помещениях;
 В1 – в полевых условиях и В2 – в морских условиях). Если такая маркировка отсутствует, то измерительное средство относится к группе А;

 категорию защищенности от электрических и магнитных полей (I или II в зависимости от уровня влияний с допускаемыми изменениями класса точности);

– государственный стандарт, по которому изготовлен прибор;

- рабочее положение шкалы прибора (горизонтальное, вертикальное);

– номинальную частоту, если она не равна 50 Гц;

- испытательное напряжение прочности изоляции;

- номинальную температуру, если она не равна 20 °C;

– тип (шифр) прибора, год выпуска, заводской номер, фабричную маркировку завода-изготовителя.

Точность измерений, а в некоторых случаях и последующих вычислений параметров устройств телеметрии определяется способом получения измерительной информации, т. е. структуры видов и методов измерений.

2.2 Классификация видов и методов измерений параметров устройств телеметрии

В зависимости от способа получения величины параметров существуют следующие виды измерений (рисунок 6) [7]:

– прямые– измерения, при которых искомое значение параметра находится непосредственно по показанию измерительного средства в течение определенного времени;

- косвенные

 измерения, при которых искомое значение параметра
 вычисляют по результатам прямых измерений других величин, связанных с
 известными искомыми аналитическими зависимостями;

– совокупные – измерения нескольких промежуточных значений параметра при различных сочетаниях известных элементов цепи. Искомое значение параметра определяется в результате решения системы уравнений, описывающих процессы, протекающие в этой цепи, после подстановки в эти уравнения значений параметров, полученных прямыми измерениями;

– совместные – измерения двух или нескольких неодноименных параметров для нахождения зависимости между ними. Эти измерения в основном используются при определении температурных и других параметров (давление, скорость и т. п.).

22

Рисунок 6 - Структура видов и методов измерений

Для прямых измерений используют **методы** сравнения и непосредственной оценки.

При методе *сравнения* измеряемое значение параметра определяется путем его сравнения с заранее известной одноименной мерой в различных вариантах. Этот метод включает в себя *нулевой* и *замещения*, а также *дифференциальный* и *совпадений*.

Методы сравнения применяются при выполнении измерений параметров в сложных элементах и узлах с затратой значительного времени. Однако полученные результаты, как правило, являются достаточно точными.

При *нулевом* методе измеряемое значение параметра уравновешивается мерой, и при этом, как правило, показание прибора, включенного в цепь, устанавливается на отметке нуль (например, мосты постоянного и переменного тока, другие измерительные приборы).

При *дифференциальном* методе измеряемое значение параметра определяется как разность между ним и одноименной мерой. При этом, чем меньше эта разница, тем меньше погрешность измерений.

При методе *замещения* для определения значения параметра элемента он замещается одноименной мерой. При этом погрешность будет тем меньше, чем больше показания приборов, подключенных к элементу согласно техническому описанию, совпадают с требуемыми.

При *методе совпадений* разность между значением параметра и одноименной мерой можно определить, используя совпадение отметок делений шкалы или цифрового значения на индикаторе прибора, а также периодических сигналов.

При методе непосредственной оценки значение параметра определяется непосредственно путем отсчета делений шкалы или цифрового значения на

индикаторе измерительного прибора прямыми измерениями в течение непродолжительного периода времени.

2.3 Автоматизация процессов измерения параметров

Повышение производительности труда обслуживающего персонала систем телеметрии, как известно, может быть достигнуто многими путями и методами. Один из них – автоматизация процессов измерений параметров элементов систем, и передача информации об их значениях операторам, контролирующим работу систем ТИ. Следует отметить, что разработке таких устройств уделялось достаточное внимание во многих конструкторских и эксплуатационных организациях. На первом этапе были разработаны комплексные специализированные измерительные позволяющие непосредственном подключении при средства. измерительного средства к измерительной панели системы телеметрии, визуально, по показанию прибора определять необходимые параметры основных элементов системы. Обслуживающий персонал при этом должен находиться непосредственно возле измерительной панели. Например, такими объектами железнодорожной автоматики (ЖА) являются релейные шкафы автоматической блокировки (АБ), автоматической переездной сигнализации (АПС) на перегонах, релейные шкафы вблизи входных светофоров или в горловинах станций [9]. В значительной мере это сократило время на проведение измерений параметров устройств ЖА, но требовало при любых погодных условиях времени на перемещение обслуживающего персонала по перегонам и станциям.

На втором этапе для реализации систем телеизмерений параметров были разработаны достаточно надежные по тому времени *устройства контроля, передачи и приема контрольной измерительной информации*. К этому времени возникла острая необходимость разработки систем диспетчерского контроля (ДК) за движением поездов, техническая реализация которых функционально была совмещена с системами телеизмерений параметров элементов ЖА. В результате этого стало возможным осуществлять дистанционный циклический контроль показаний входных и выходных светофоров, состояния блок-участков на перегонах, приемо-отправочных путей на станциях, состояния отдельных элементов перегонных систем АБ и АПС. Одним из недостатков таких комплексных систем является малый объем электронной памяти, поэтому логическая обработка информации должна выполняться обслуживающим персоналом.

На третьем этапе, после разработки каналообразующей аппаратуры, позволяющей осуществлять передачу и прием достаточного объема информации, были разработаны комплексные микропроцессорные системы

сбора, обработки и регистрации информации о техническом состоянии устройств ЖА в составе систем диспетчерского контроля за движением поездов. В этих системах с помощью специальных диагностических датчиков осуществляется как непрерывный контроль состояния отдельных элементов. так И качественная оценка функционально важных. промежуточных параметров элементов перегонных и станционных систем. В данном случае под качественной оценкой понимается точность измерения контролируемых параметров при минимально допустимых погрешностях. Эти системы могут иметь практически любой объем электронной памяти, а их высокое быстродействие позволяет осуществлять автоматическую логическую обработку информации с возможностью представления ее в удачной форме на дисплеях АРМ обслуживающего персонала.

Основными требованиями, предъявляемыми к диагностическим датчикам, являются [6]:

 обеспечение достаточного объема информации о работоспособности элементов систем;

 параметры входных цепей датчиков должны исключать их мешающее воздействие на работоспособность элементов контроля с минимально допустимой погрешностью;

 обеспечение четкой фиксации и измерение величины параметров в пределах «норма», «выше нормы» и «ниже нормы» в широком диапазоне температуры окружающей среды;

– отказ или неисправность датчиков не должны приводить контролируемую систему в неработоспособное состояние.

Современные диагностические датчики имеют сложную структуру, состоящую из последовательного и параллельного соединений токовых, потенциальных, фазовых и комбинированных чувствительных элементов, циф-ровых преобразователей с элементами памяти, устройств управления и передачи информации.

2.4 Информационно-измерительные системы и перспективы их применения

2.4.1 Общая характеристика информационно-измерительных систем

Информационно-измерительные системы классифицируются по ряду признаков: по структуре построения, назначению, характеру взаимодействия с объектом контроля, характеристикам каналов связи и т.д.

В зависимости от структуры построения эти системы подразделяяются на несколько основных групп:

 с параллельными измерительными или контрольными каналами – структуры параллельного действия;

 с одним измерительным или контрольным каналом с последовательным подключением различных датчиков – структуры параллельно-после-довательного действия;

 с одним измерительным каналом и одним датчиком, который с помощью сканирующего устройства осуществляет измерение или контроль в N точках, – структуры последовательного действия;

 в которых процесс измерений или контроля осуществляется с помощью общей для всех каналов мерой – структуры с мультиплицированными развертывающими системами.

По назначению информационно-измерительные системы подразделяются на измерительные и технической диагностики. В свою очередь системы технической диагностики подразделяются на подсистемы автоматического контроля состояния отдельных функционально важных элементов и полной технической диагностики.

Подсистемами автоматического контроля крайних состояний устройств осуществляется контроль функционирования только отдельных элементов и передача соответствующей информации обслуживающему персоналу. Использование таких подсистем эффективно в тех случаях, когда характер поведения объекта контроля заранее известен и его возможные состояния подразделяются на допустимые и недопустимые. Анализ контрольной информации осуществляется обслуживающим персоналом. По этой причине она имеет качественный характер и, как правило, однозначно характеризует состояние, в котором находится элемент системы.

Подсистемы полной технической диагностики состояния объектов контроля, к сожалению, пока применяются ограниченно и являются в основном системами функционального диагностирования. Измерения параметров и дискретный контроль состояния отдельных элементов удаленных объектов осуществляются с помощью диагностирующих аналоговых и дискретных датчиков. Информация в закодированном виде передается в специальные пункты для последующей обработки и анализа с целью определения состояния системы в целом. В тех случаях, если состояние элемента не соответствует установленному, то автоматически выясняется характер и место отказа.

Следует заметить, что современные компьютерные системы технической диагностики дополнительно могут формировать рекомендации в режимах «Справка» или «Советчик» для устранения неисправностей или отказов.

По характеру взаимодействия с объектом контроля информационно-измерительные системы можно подразделить на пассивные и активные [9,14].

Пассивные – системы функционального диагностирования, которые только воспринимают и анализируют информацию от объекта, а после окончания цикла опроса выдают пользователям результаты анализа.

Активные – системы тестового диагностирования, которые способны не анализировать информацию, только воспринимать И но И при необходимости воздействовать на объект контроля с целью уточнения состояния его отдельных элементов. Такое воздействие способствует прекращению на определенное время процесса функционирования объекта и осуществляется по заранее установленным алгоритмам с учетом обратной реакции. В этих системах отдельные результаты анализа могут отображаться в реальном масштабе времени по мере окончания цикла опроса, а детальные – после полного диагностирования. Учитывая особенности процесса их функционирования, а именно случаи прекращения работы объекта, на железнодорожном транспорте они применяются ограниченно.

По характеристике каналов связи информационно-измерительные системы могут быть проводными и беспроводными.

В *беспроводных* системах используются каналы радиосвязи, поэтому они называются радио-телеизмерительными. Для обеспечения заданной точности они могут быть как одноканальными, так и многоканальными. В *проводных* системах в качестве каналов связи применяются воздушные или кабельные линии.

2.4.2 Основные требования к диагностическому обеспечению

Разработка мероприятий по диагностированию объектов выполняется в несколько этапов, одним из которых является этап определения диагностического обеспечения [5, 10, 11]. На этом этапе, как правило, осуществляются следующие операции:

1) детально изучается объект диагностирования, т.е. определяются принципы работы, структура, конструкция его элементов, выполняемые функции и т.д.;

2) определяется перечень или классы возможных неисправностей и отказов, условия и признаки их проявления, а также процессы обнаружения по информации в контрольных точках;

3) при необходимости для малоизученных объектов выполняется физическое моделирование влияния неисправностей и отказов;

4) при формализованном решении задач диагностирования выбирается известная или разрабатывается новая математическая модель функционирования объекта;

5) по результатам анализа математической модели функционирования объекта выбираются метод, тесты и процедуры диагностирования;

6) составляется оптимальный алгоритм диагностирования;

7) по полноте обнаружения возможных неисправностей и отказов оценивается качество алгоритма диагностирования;

8) выбираются оптимальные средства диагностирования, удовлетворяющие требованиям полноты обнаружения и глубины поиска неисправностей и отказов;

9) оцениваются средства диагностирования по безотказности, достоверности работы и т.д.;

10) при необходимости дорабатываются алгоритмы диагностирования и уточняются выбранные средства диагностирования;

11) исследуются и разрабатываются схемы съема информации с контрольных точек с учетом того, что эти схемы должны:

 при подключении к устройствам телеизмерений не снижать показатели функциональной безопасности этих устройств;

 выполнять функции сбора цифровых и аналоговых электрических сигналов постоянного, импульсного и переменного токов;

иметь гальваническую развязку;

– обеспечивать защиту от перенапряжений;

выполняться с конструктивными минимальными дополнениями на объекте;

 потреблять ток, не превышающий 30 % рабочего тока контролируемого объекта;

12) исследуется работа системы диагностирования в целом, в том числе и экспериментально.

2.5 Особенности и задачи технического диагностирования систем железнодорожной автоматики

Системы железнодорожной автоматики (СЖА), такие как автоматическая блокировка (АБ), электрическая (ЭЦ), диспетчерская (ДЦ), горочная автоматическая централизации (ГАЦ), автоматическая переездная сигнализация (АПС) и другие, относятся к классу сложных систем длительного пользования с непрерывным процессом функционирования. Они имеют, в основном, последовательную структуру построения и, поэтому отказ отдельного элемента может привести к частичному или полному отказу всей системы [12, 14].

Вероятность отказов элементов систем, как известно, увеличивается в зависимости от продолжительности срока эксплуатации и поэтому в

строго установленные сроки требуется периодический контроль соответствия их параметров установленным техническими нормами. В настоящее время такой контроль и при необходимости устранение неисправностей осуществляется во время технологического обслуживания. Технологическое обслуживание систем автоматики является одной из главных задач персонала ШЧ, и, как показывает статистика, по разным причинам она не позволяет полностью исключить все неисправности и отказы.

Известно, что из-за отказов в системе управления проходным светофором на двухпутном железнодорожном участке со средней интенсивностью движения поездов, каждый час «ложного» запрещенного показания светофора снижает суточную пропускную способность на 2,0–2,5 %, причем среднесуточная скорость движения уменьшается на 3–4 км/ч.

Время восстановления нормального функционирования СЖА в СНГ пока превышает интервал попутного следования поездов и в среднем составляет: для ЭЦ – 84; АБ – 77; полуавтоматической блокировки (ПАБ) – 84; АПС – 60 мин.

Время восстановления отказавшей системы является случайной величиной и состоит из следующих слагаемых:

$$T_{\rm B} = t_{\rm off} + t_{\rm fip} + t_{\rm fi} + t_{\rm yc},$$

где t_{on}, t_{пр}, t_п, t_{yc} – время, соответственно оповещения обслуживающего персонала об отказе; прибытия к отказавшему объекту систе-

мы; поиска неисправности; устранения отказа.

Анализ причин, влияющих на длительность времени восстановления, свидетельствует, что оно зависит от ряда организационных и технических причин. При этом наблюдается некоторое опережение количественных и качественных изменений средств автоматики над возможностями эксплуатационного штата.

Основные организационные и технические причины, влияющие на длительность времени восстановления:

– используемые во время технологического обслуживания простые измерительные средства не позволяют получать полные данные о параметрах систем автоматики и недостаточны для анализа их состояния. При этом, чем сложнее система (а также недостаточная квалификация обслуживающего персонала), тем больше вероятность получения ошибочных результатов. Применение сложных измерительных средств требует специальной подготовки персонала и значительного увеличения времени измерений;

 получаемая обслуживающим персоналом информация о неисправностях или отказах систем автоматики от дежурных по станциям (ДСП) по разным причинам весьма ограничена и иногда недостоверна. В затрудняется процесс принятия результате этого правильных И рациональных решений по своевременному устранению неисправностей и отказов. По этой причине обслуживающему персоналу нередко приходится, прибыв к месту расположения неисправной системы, после локализации обнаружения отказавшего неисправности и элемента или блока, возвращаться за иным элементом или блоком на пост ЭЦ или ремонтнотехнологический участок (РТУ);

– в значительной мере сокращение времени поиска и устранения отказа зависит от уровня знаний и практического опыта обслуживающего персонала.

Значительно уменьшить время восстановления отказавшей системы анализа информации автоматики можно за счет полной от режиме систем функционирующих в непрерывном автоматическом диагностирования. результате технического В этого возможно дистанционно определить отказавший элемент или узел и наметить оптимальный алгоритм локализации и устранения отказа, контроля и регулировки параметров системы.

При диагностировании СЖА в основном применяется функциональное диагностирование, для которого определение эффективности обусловлено эксплуатационными особенностями.

Принято считать функциональное диагностирование малоэффективным, когда значение вероятности безотказной работы устройства или системы в самого длительного установленного периода непрерывной конце эксплуатации не опускается ниже допустимого значения, заданного в технических нормах, т. е. $P_{6}(t) > P_{6. gon}$. Однако применительно к СЖА с их пространственным размещением оборудования на перегонах и станциях использование технического диагностирования, даже в указанном случае, уменьшить задержки поездов позволит зна-чительно И повысить безопасность их движения. При любом отказе СЖА осуществляется переход на нештатный режим ее работы, при котором, как показывает статистика, в основном и наблюдаются случаи брака и аварий.

Вместе с тем необходимо учитывать и то, что некоторые поверочные операции из-за своей сложности могут не поддаваться автоматизации или быть малоэффективными.

Поэтому вопрос о целесообразности диагностирования СЖА должен решаться с учетом следующих взаимосвязанных факторов: значения вероятности $P_5(t)$ безотказной работы объекта, цели диагностирования и ее полноты, точности и требуемой надежности, времени, отводимого на проверку, универсальности и гибкости проверяющей системы, вида индикации и регистрации результатов проверки, допустимой стоимости и т.д. В общем случае известными и перспективными в технической диагностике являются задачи:

 - диагноза или определения состояния, в котором в настоящий момент находится система или устройство. Она возникает при решении вопроса определения работоспособности системы, и при поиске в ней неисправностей;

 прогноза или предсказания состояния, в котором окажется система при определенных эксплуатационных ситуациях в будущем, в том числе и при ее повреждении;

– генеза или *анализа возможного момента появления неисправности* и влияния ее на работу системы.

В мировой практике наиболее часто решается задача диагноза, а современные компьютерные системы технической диагностики позволяют надежно функционировать также и в режимах параллельного решения задач технического прогнозирования.

2.6 Диагностирующие тесты и алгоритмы определения состояния телеметрических систем

Если возможные состояния систем телеизмерений рассматривать как функцию, зависящую от состояния ее составных элементов, то **процесс автоматического поиска неисправностей** можно разделить на два этапа.

На первом этапе такая система подразделяется на совокупность последовательных и параллельных узлов. После этого осуществляется их индивидуальный контроль работоспособности и определяется неисправный узел, на втором – неисправный схемный узел диагностируется аналогично и определяется его неисправный элемент, который впоследствии восстанавливается или заменяется на исправный.

При определении состояния телеметрических систем должно учитываться следующее:

– некоторые системы, особенно реализованные на микроэлектронной элементной базе, имеют резервирование отдельных наиболее ответственных узлов. Это резервирование может осуществляться как в «холодном», так и «горячем» режимах. Во время эксплуатации таких систем автоматическое диагностирование резервных узлов или не осуществляется, или осуществляяется в упрощенном режиме. При этом могут оставаться необнаруженными их отдельные неисправности или отказы, которые проявятся только при включении этих узлов в работу:

 особое значение при диагностировании придается длительности времени его проведения. Очевидно, длительность этого времени зависит от ряда факторов, и чем оно короче, тем эффективнее может быть устранено повреждение. В противном случае при длительном времени проведения диагностирования могут появиться неисправности в уже проверенных элементах и вызывать впоследствии недопустимые искажения алгоритмов работы систем;

– в процессе поиска «сложных» неисправностей в системах телеметрии ее элементы разбиваются на множество узлов с трудно различимыми между собой эквивалентными состояниями. В таких случаях определение неисправности одного класса в нескольких узлах по причине эквивалентных их состояний затруднено. Это вызвано тем, что в таком случае требуется деление эквивалентных состояний узлов на соответствующие их классы. В свою очередь, диагностирование узлов по классу состояний занимает значительное время и представляет непростую задачу;

– при строительстве и вводе систем телеметрии в эксплуатацию ее элементы, после заводского изготовления, заранее поставляются и длительно хранятся в разных условиях. Перед пуском систем в эксплуатацию производится поэлементная проверка действия узлов, цепей, источников питания, а также измерение параметров кабельных линий. Такая проверка, часто осуществляемая вручную, представляет собой длительный и трудоемкий процесс, при котором, к сожалению, выявляются и устраняются не все ошибки в проекте и неисправности. Эти ошибки и неисправности после ввода системы в эксплуатацию длительное время накапливаются и сказываются на надежности функционирования системы.

Внедрение в последующем технического диагностирования требует на первом этапе применения сложных, дорогостоящих диагностирующих датчиков и особых проверок. В то же время использование технического диагностирования во время пусконаладочных работ значительно упрощает сам процесс регулировки и позволяет обнаруживать абсолютное большинство неисправностей и отказов.

Процесс функционального диагностирования представляет собой последовательность операций (проверок), каждая из которых предназначена решать соответствующую задачу по определению состояния системы. Совокупность таких проверок называют **диагностирующим тестом** [6,15].

По назначению тесты подразделяются на проверяющие и диагностические. Проверяющий представляет собой совокупность проверок, позволяющих обнаружить факт любой неисправности, которая может привести к отказу системы, диагностический – совокупность проверок, позволяющая обнаружить неисправное устройство.

Важной характеристикой процедур диагностирования является **полнота обнаружения неисправностей**, которая обязательно согласована с определенным заранее и строго фиксированным списком неисправностей. Это список, или ограничение, накладываемое на процесс обнаружения неисправностей, и определяет глубину диагноза.

По полноте обнаружения неисправностей различают одиночный, полный кратный И тесты. C помошью одиночного в системе обнаруживаются все одиночные неисправности, кратного все совокупности из k одиночных и все одиночные неисправности, полного – неисправности любой кратности. Так, при диагностировании системы, в которой неисправность возникла в процессе функционирования, в основном одиночные тесты, т. к. вероятность используются возникновения одновременно нескольких неисправностей невелика. По сравнению с одиночными, полные тесты имеют гораздо большую длину и поэтому требуют для диагностирования больше времени. Они применяются, в основном, при контроле устройств в процессе изготовления в заводских условиях, когда вероятность одновременного существования нескольких повреждений повышается из-за дефектов комплектующих изделий, ошибок в монтаже и настройке.

Тесты в зависимости от их длины делятся на тривиальный, минимальный и минимизированный.

Тривиальный тест имеет максимальную длину и содержит все возможные для данной системы проверки. Этот тест применяется при имеющейся возможности полного моделирования. Наименьшее число проверок имеет *минимальный* тест, и с его помощью контролируется наличие неисправностей в системах, процесс функционирования которых описан математическими выражениями. В эксплуатационной практике чаще всего используется *минимизированный* тест, имеющий длину, близкую к длине минимальных тестов, но требующий математического описания процесса функционирования системы.

С помощью диагностирующих тестов строятся процедуры диагноза, представляющие собой последовательность элементарных проверок по определенному алгоритму. Алгоритм диагноза реализуется специальными устройствами, называемыми *средствами диагноза*. Взаимодействующие между собой объект и средства диагноза образуют *систему диагноза*.

Все системы телеметрии с точки зрения диагностики можно разделить на три класса: непрерывные, дискретные и комбинированные.

Непрерывные системы имеют входные, внутренние и выходные сигналы, которые в основном являются аналоговыми с непрерывными функциями времени. В *дискретных* системах сигналы между узлами и блоками передаются в кодовом виде дискретно. Комбинированные системы построены с использованием как аналоговых, так и дискретных сигналов.

В зависимости от этих классов при диагностировании систем должны применяться специальные датчики дискретного, аналогового или комбинированного принципа действия.

2.7 Прогнозирование технического состояния телеметрических систем

В настоящее время процесс технологического обслуживания систем телеметрии в основном реализован на принципе выработки их возможного «ресурса». Учитывая это, автоматический контроль и диагностирование указанных устройств сведены к решению задачи диагноза, т.е. контроля состояния их отдельных устройств в данный момент времени.

Однако в силу разной квалификации обслуживающего персонала и перспектив совершенствования процесса технологического обслуживания особый практический интерес представляет решение задачи прогноза, т. е. прогнозирования возможного технического состояния устройств в будущем. Такое прогнозирование, очевидно, позволит перейти к новому, более прогрессивному и рациональному принципу эксплуатации устройств и систем по техническому эксплуатации состоянию, определяемому в результате диагностирования. При этом появляется возможность объективного анализа профилактических периодов И работоспособности на требуемый период времени.

Опыт эксплуатации микропроцессорных систем для измерений [16] указывает на возможность дальнейшего совершенствования в этом направлении процесса технического обслуживания.

Главной задачей прогнозирования является оценка работоспособности устройств и систем в будущем. Оно может осуществляться по нескольким известным алгоритмам, основные из которых – это алгоритмы экстраполяции и статистической классификации [17].

Их непосредственное использование при диагностировании несколько затруднено из-за сложности последующей классификации отказов на опасные и неопасные, а значит и в определении срочности устранения отказов по времени. Учитывая это, представляется целесообразным разработка их частного случая, суть которого заключается в следующем.

При использовании алгоритмов экстраполяции состояние устройств и систем может быть представлено в виде многомерной векторной функции

$$F = Q(X, t),$$

где $\vec{X}(t_0) = \{x_1(t), \dots, x_i(t)\}, \dots, x_n(t)$ – дискретная или непрерывная функция в период времени (t_0, \dots, t_n) известной области $T_{\text{изв}}$.

В этом случае можно определить значения функции $\vec{X}(t_0)$, $\vec{X}(t_1)$, ..., $\vec{X}(t_i)$, ..., $\vec{X}(t_n)$ соответственно в моменты времени $t_0, t_1, \ldots, t_i, \ldots, t_n$ (рисунок 7). Затем с помощью модели прогнозирования $W(\vec{X}, t)$ по известным значениям (\vec{X}, t_i) необходимо определить значения функции $\vec{X}(t_{n+1})$, ..., $\vec{X}(t_{n+i})$, ..., $\vec{X}(t_{n+m})$ в будущие моменты времени t_{n+1} , ..., t_{n+j} , ..., t_{n+m} .

В результате этого могут быть получены следующие статистические характеристики:

- моменты времени предотказного состояния систем;

- моменты времени отказа систем;

– состояния систем в будущие периоды времени.

Оценивая по заранее известному критерию опасности Q состояние систем в будущие периоды времени, можно определить категорию возможного отказа — опасный или неопасный, а затем наметить своевременные мероприятия для его исключения.

Для возможных отказов могут определяться такие наиболее важные параметры, как среднее время и вероятность критического изменения параметров систем в целом и их отдельных узлов и элементов.

При использовании частных алгоритмов статистической классификации в первоначальный момент времени или в ограниченный его период могут определяться значения параметров контролируемого устройства или системы $x_1, ..., x_n, ..., x_{n+1}, ..., x_k$ как координат функции $\vec{X}(t_0)$.

Затем, используя модель прогнозирования $W(\vec{X}, t_0)$, по совокупности параметров $\{x_s\}, s = \vec{1}, \vec{E}$ и координат вектора $\vec{X}(t_0)$ определяют, в каком из известных заранее классе состояний S находится система в данный момент времени: $S_1, S_2, \ldots, S_n, S_k$. Путем их анализа в любой момент времени определяется предотказное состояние и время его возможного возникновения.

При этом не представляет особой сложности и определение момента времени возникновения отказа *t*₀ и его категории.
Анализ рассмотренных частных алгоритмов экстраполяции и статистической классификации свидетельствует об их различиях при решении задачи прогнозирования, которые заключаются в следующем.

При использовании частных алгоритмов экстраполяции необходимо первоначальное представление состояния в виде многомерной векторной функции, а при частных алгоритмах статистической классификации – значения параметров контролируемой системы, как координаты функции ее состояния.

Очевидно, что алгоритмы экстраполяции являются наиболее простыми при практической реализации, т. к. заранее известны нормативные значения всех схемных узлов и блоков, а также несложно их представление в виде многомерной функции. Однако при использовании частных алгоритмов экстраполяции требуется определение не только состояния систем, но и их классов, что является довольно непростой задачей. В то же время это позволяет непосредственно оценивать категорию отказа и время его возможного возникновения с достаточно высокой вероятностью.

Известно, что любые временные процессы состояния устройств и систем носят случайный характер. Такие случайные процессы в большинстве случаев имеют несколько составляющих, изменения которых в отдельные периоды времени влияют на формальное описание процессов функционирования систем, являющееся основным при прогнозировании.

Изменение технического состояния устройств, как известно, происходит из-за старения и деградации, приводящих к неисправностям и отказам. По характеру протекания процессы деградации подразделяются на две группы. К первой относятся процессы, вызывающие внезапное или катастрофическое изменение технического состояния систем вследствие резкого изменения физических параметров элементов; ко второй процессы, приводящие к постепенному изменению физических параметров элементов. Постепенные деградационные процессы параметров устройств с течением времени накапливаются, а затем вызывают прекращение работоспособности этих устройств.

В общем случае процесс изменения состояния систем можно представить в виде

$$\vec{X}(t) = \left\{ \vec{H}(t) \pm \varepsilon_{\rm H}(t) \right\} + \left\{ \vec{Q}(t) \pm \varepsilon_{\rm 0}(t) \right\},\$$

где $\vec{H}(t)$, $\vec{Q}(t)$ – векторные составляющие, характеризующие необратимые и обратимые процессы;

Составляющая $\vec{H}(t)$ в большей мере определяет детерминированную часть изменения состояния устройств и систем, а $\vec{Q}(t)$ характеризует его стохастическую часть.

Указанные составляющие в зависимости от периода года имеют сезонные колебания.

Если обозначить $\vec{H}(t) \pm \varepsilon_{\rm H}(t) = h$ и $\vec{Q}(t) \pm \varepsilon_0(t) = q$, то процесс изменения состояния элементов можно представить в виде

$$\vec{X}(t) = \vec{h}(t) + \vec{q}(t).$$

Если $|h(t + \Delta t) - h(t)| >> |q(t + \Delta t) - q(t)|$, то в этом случае наблюдается процесс постепенного изменения технического состояния телеметрической системы. При этом очевидно, что чем больше указанное неравенство, тем ближе процесс изменения $\vec{X}(t)$ приближается к детерминированному, характеризующему постепенные отказы.

Деградационные процессы в системах могут быть самыми разнообразными И, прежде всего, детерминированными. Детерминированными считаются процессы, у которых математическое ожидание M[q(t)] = 0. В этом случае, очевидно, значительно облегчается прогнозирование состояния систем и возможно получение результатов прогноза с большой точностью.

Несмотря на принципиальное отличие решения задачи прогнозирования с помощью рассмотренных алгоритмов экстраполяции и статической классификации, они имеют общие процедуры процесса прогнозирования. Эта общие процедуры можно представить в виде трех этапов: *ретроспектирование, диагностирование* и *прогнозирование.*

Рассматривая только этап прогнозирования, следует отметить, что выбор его методов и алгоритмов зависит от множества факторов, которые приведены в таблице 1. Каждый из этих факторов, очевидно, по-разному влияет на выбор алгоритмов прогнозирования, и при практическом их выборе всегда требуется детальная проработка, а в ряде случаев – и дополнение.

В то же время любые временные процессы эксплуатации систем телеизмерений, как известно, являются случайными, и их количественно можно представить в виде временного ряда. Такие случайные процессы в большинстве случаев имеют несколько составляющих, изменение которых в отдельные периоды времени (закон распределения, стационарность и др.) принципиально влияют на формальное описание процессов эксплуатации, без которого невозможно прогнозирование.

Изменения технического состояния устройств и систем представляют собой явления старения и деградации, приводящие к неисправностям и отказам.

Фактор	Этапы	Характеристика
Объект	Период	Эксплуатация
	Использование	Многократное
	Вид контроля	Периодический, непрерывный
Процесс	Характер протекания	Монотонный и дискретный
	Оценка	Многомерная
	Характер нестационарности	Линейный и нелинейный
	Вид процесса	В основном гауссовский
Информация	Текущий объем	Ограниченный и достаточный
	Характер поступления	Периодический и непрерывный
	Априорность	Имеется
	Вид	Закодированная
Модель	Характер коэффициентов	Линейный и нелинейный
	Закон распределения классов	
	состояний	Известен
	Вид	Интерполяционный
Прогноз	Вид	Экстраполяция или
		статистическая классификация
	Срок	Краткосрочный, долгосрочный
	Способ	Прямой и обратный

Таблица 1- Обобщенная характеристика факторов этапа прогнозирования

Основными причинами этих явлений являются:

- конструктивные несовершенство конструкции;
- проектные недостаточное согласование узлов и элементов;
- технологические нарушение технологии обслуживания;

 – эксплуатационные – старение, изнашивание и нарушение правил эксплуатации.

По характеру протекания процессов деградации их можно разделить на две группы. К первой относятся процессы, вызывающие внезапное или катастрофическое изменение технического состояния устройств и систем вследствие резкого изменения физических параметров, в результате чего наступает неисправность или отказ устройств по причине резкого скачкообразного изменения их характеристик за пределы допустимых; ко второй – процессы, приводящие к постепенному изменению физических параметров устройств и систем.

Постепенные деградационные процессы параметров устройств с течением времени накапливаются и приводят к потере их работоспособности.

В общем случае процесс изменения состояния устройств и систем можно представить в виде

$$\vec{X}(t) = \vec{\varepsilon}(t) + \vec{\xi}(t) + \vec{\eta}(t),$$

где $\vec{\epsilon}(t)$ – векторная погрешность измерительных цепей; $\vec{\xi}(t) + \vec{\eta}(t)$ – векторные составляющие, характеризующие необратимые и об-

ратимые процессы.

Составляющая $\vec{\xi}(t)$ определяет закономерность изменения процесса и в большей мере детерминированную его часть, а $\vec{\xi}(t)$ и $\vec{\eta}(t)$ характеризуют его стохастическую часть. Последние составляющие в большинстве случаев имеют «сезонные» колебания.

Для простоты описания составляющие $\vec{\xi}(t)$ и $\eta(t)$ можно объединить:

$$\vec{\xi}(t) + \vec{\eta}(t) = \vec{k}(t)$$
.

Тогда процесс состояния устройств и систем можно представить в виде

$$\vec{X}(t) = \vec{k}(t) + \vec{\varepsilon}(t).$$

Процессом постепенного изменения технического состояния устройств и систем можно, в общем случае, считать процесс, у которого выполняется условие

$$\left\|\xi(t+\Delta t)-\xi(t)\right\| >> \left\|k(t+\Delta t)-k(t)\right\|,$$

где $\|\xi(t + \Delta t) - \xi(t)\|$ и $\|k(t + \Delta t) - k(t)\|$ – норма вектора;

 $\Delta t > 0$ – период времени.

Очевидно, что чем больше указанное неравенство, тем ближе процесс изменения $\vec{X}(t)$ приближается к детерминированному, характеризующему постоянные отказы.

Если математическое ожидание составляющей k(t) приравнять нулю, т.е. M[k(t)]=0, то можно записать соотношение, которое является неравенством Коши – Буняковского:

$$\left\|\xi(t+\Delta t)-\xi(t)\right\| \gg \sqrt{D[X(t+\Delta t)]D[X(t)]} \gg \operatorname{cov}[X(t+\Delta t)+X(t)],$$

где D – дисперсия процесса состояния устройств и систем X(t) и $(t + \Delta t)$; соv – оператор ковариационного момента.

Деградационные процессы могут быть самыми разнообразными и прежде всего детерминированными и стохастическими. *Детерминированными* считаются процессы, у которых выполняются известные условия:

$$\vec{X}(t) = \vec{k}(t) + \vec{\xi}(t)$$
 и $M[k(t)] = 0.$

В таком случае облегчается получение прогноза с большой точностью. *Стохастические* процессы классифицируются по области определения:

- функций – вещественные, комплексные;

- характеру изменения времени - дискретные, непрерывные;

- виду дисперсии - монотонные, флуктуационные;

виду приращений – стационарные, марковские и ортогональные (независимые);

– закону распределения в сечениях функций – гауссовские, вейбулловские и др.

Наиболее характерными моделями детерминированных процессов являются следующие [13, 18]:

1 В случае индивидуальной реализации этих процессов используется общая модель вида:

$$X(t) = W\{\beta(x), t\} + \varepsilon(t),$$

где $W\{\beta(x),t\}$ – модель необратимой составляющей, известной с точностью

до коэффициентов $\left\{ \beta^{\rho} = \left[\beta_{0}, \beta_{1}, \dots, \beta_{\mu} \right] \right\};$

 ρ – знак транспортирования; $\varepsilon(t) = \varepsilon_1(t) + \varepsilon_2(t)$;

t – случайная величина, связанная с ошибками обратной составляющей и точностью измерительных цепей.

Эта модель наиболее эффективна в случаях, когда известны физические параметры изменения элементов и ошибки случайной величины $\varepsilon(t)$.

2 Если детерминированный процесс представлен группой одномерных реализаций, то для его описания наиболее часто применяется модель вида

$$\vec{X}(t) = \vec{W} \{\beta(x), t\} + \vec{V} \{\alpha(\varepsilon), t\},\$$

где \vec{V} { $\alpha(\varepsilon), t$ } – модель обратимой составляющей.

Эта модель является наиболее полной для одномерных взаимосвязанных групповых процессов изменения состояния устройств и систем.

3 Рассмотренные выше модели могут быть применены и для многомерных случаев, и тогда, когда индивидуальный многомерный детерминированный процесс может быть представлен моделью

$$\vec{X}(t) = \vec{W} \{\beta(x), t\} + \vec{E},$$

где $\vec{X} = ||x_1...x_n||$ – вектор показателей контролируемого процесса; $\vec{W} \{\beta(x), t\} = ||\vec{W} \{\beta^1(x), t\}, ..., \vec{W} \{\beta^k(x), t\}||$ – вектор функций времени *t* и коэффициентов β ; $\vec{E} = ||\varepsilon_1...\varepsilon_n||$ – вектор ошибок, возникающих из-за

существования случайной составляющей.

Эта модель является наиболее общей и поэтому наиболее часто используется при прогнозировании сложных ответственных устройств и систем.

Таким образом, выбор оптимальных алгоритмов прогнозирования зависит от теоретического обоснования возможных состояний устройств и элементов измерительных систем с учетом всего многообразия факторов.

З ПРИНЦИПЫ ПОСТРОЕНИЯ ЦИФРОВЫХ УСТРОЙСТВ ТЕЛЕМЕТРИИ

3.1 Структурная схема многоканальной системы телеизмерений

Для диагностики и контроля параметров сложных технических систем применяются многоканальные системы телеизмерений, позволяющие одновременно контролировать, в реальном масштабе времени, большое число технических параметров. Например, современные системы частотного диспетчерского контроля позволяют контролировать состояние до 500 объектов контроля, а системы диспетчерской централизации с микропрограммным управлением позволяют не только контролировать, но и управлять до 10³ объектов одновременно.

На рисунке 8 приведен пример построения многоканальной системы телеизмерения для объекта с большим числом контролируемых параметров, а на рисунке 9 показана структурная схема приемника измерительной информации.

На структурной схеме сбора и передачи измерительной информации приведены:

- объект контроля с *n* параметрами контроля;

– Ис.1, Ис.2, ..., Ис.*n* – формирователи сообщений от датчиков – источников сообщения;

Рисунок 8 – Структурная схема системы сбора и передачи измерительной информации

– П – пусковой узел, служащий для фиксации сигнала пуска передающих устройств при изменении состояния хотя бы одного из источников сообщения, а также для организации адресных цепей;

– МП – мультиплексор, служащий для преобразования параллельного потока информации в последовательный поток;

– Ш – шифратор, придаёт импульсам кода определённые признаки в соответствии с передаваемым приказом, а также осуществляет преобразование кодов;

– Р – распределитель, преобразует временную последовательность импульсов в пространственную или пространственно-временную, или же преобразует параллельные во времени импульсы в последовательные;

 – Γ – генератор, вырабатывает стабильную последовательность импульсов для формирования импульсных признаков кодовых сообщений;

– М – модулятор, обеспечивает замену первичных сигналов кодирующих устройств на сигнал переносчик сообщений;

– ЛУ – линейное устройство, связывает передающие устройства телеметрической системы с линиями связи, обеспечивая требуемое согласование параметров.

43

Рисунок 9 – Структурная схема приёма и обработки измерительной информации

В современных системах телеметрии некоторые из перечисленных узлов могут объединяться в один системный узел. Например, Ш, Р, Г и М широко выпускаются в виде одной микросхемы. Также в современных системах телеметрии могут отсутствовать отдельные узлы, например, узел П, т.к. его функции исполняют узлы Ис.1, Ис.2, ..., Ис.*n*.

Для обратного процесса, т.е. приёма сигналов из линии связи, обработки полученной измерительной информации используются устройства и узлы, приведённые на структурной схеме (рисунок 9). Линейный узел на указанной схеме, а также распределитель имеют те же функции, что и на предыдущей схеме:

 – ДМ – демодулятор, предназначен для преобразования сигнала переносчика в стандартизованный сигнал (унифицированный), циркулирующий в узлах (проходящий по узлам) приёмного устройства;

 – 3 – защитный узел, осуществляет защиту сообщений от искажений и помех (а иногда и от несанкционированных воздействий);

 – ДШ – дешифратор из принятого сигнала восстанавливает передаваемое сообщение и передаёт воздействие (сигнал) на демультиплексор;

– ДМП – демультиплексор, осуществляет распределение последовательности кодовых импульсов с одного входа на *n* выходов;

 – ФСР – формирователи сигналов реализации, преобразуют принятые кодовые последовательности в соответствующие сигналы индикации (аналоговые, цифровые, световые, цветовые, звуковые, диаграммные, мнемонические);

– ИУ – информационные устройства, предназначены для передачи оператору или диспетчеру *n*-го количества контролируемых параметров, также эти устройства могут быть использованы для накопления принятой информации, либо её регистрации, либо передачи её в вышестоящие иерархические информационные структуры.

3.2 Счетчики импульсов

Устройства, предназначенные для счёта количества импульсов, поступающих на вход, называют счётчиками. Счётчики выполняются на *RS*-, *T*-, *D*- и *JK*-триггерах, а также сдвигающих регистрах.

Простейшим счётчиком является счётный *T*-триггер, осуществляющий счёт импульсов по модулю 2. Соединив *m* счётных триггеров, можно получить *m*-разрядный счётчик, который имеет 2^m различных состояний. Каждому из этих состояний соответствует десятичное число – от 0 до 2^m –1. Максимальное число импульсов, которое может быть сосчитано счетчиком, называют коэффициентом счёта K_{cq} . Он равен числу устойчивых состояний: $K_{cq} = 2^m$.

Частота импульсов, появляющихся на выходе последнего разряда счётчика, в K_{cq} раз меньше, чем частота импульсов, поступающих на вход. Поэтому счётчики используются также в качестве делителей частоты, обеспечивающих на выходе в K_{cq} раз меньшую частоту сигнала, чем на входе.

По своему назначению **счетчики** подразделяются на простые и реверсивные. Простые счётчики, производящие счёт импульсов в прямом на-правлении, называются *суммирующими*. Счётчики, производящие счёт импульсов в обратном направлении, называются *вычитающими*. Реверсивные счётчики могут выполнять счет импульсов как в прямом, так и в обратном направлениях, т. е. могут работать как в режиме сложения, так и в режиме вычитания. По способу организации счёта различают *синхронные* и *асинхронные* счётчики.

В зависимости от вида межразрядных связей имеются счётчики с непосредственной связью, co связью по цепям переноса и с комбинированными связями. В счётчиках с непосредственными связями управляющими сигналами для старших разрядов счётчика являются уровни сигналов с выходов младших разрядов. Счётчики со связью по цепям переноса бывают с последовательным, параллельным и параллельно-последовательным переносом. Они характеризуются тем, что для управления старшими разрядами используются импульсы переноса, младших разрядов. Примером счетчиков получаемые с с непосредственными связями является суммирующий счетчик (рисунок 10).

45

Установка в 0

Рисунок 10 – Схема 2-разрядного суммирующего счетчика

Состояние триггеров суммирующего счетчика при поступлении счетных импульсов приведено в таблице 2. Функциональная схема двухразрядного вычитающего счётчика, построенного на *Т*-триггерах, показана на рисунке 11, состояния триггеров – в таблице 2.

Допустим, оба триггера находятся в состоянии 0. После поступления первого счётного импульса триггер DD1 перейдёт в состояние единицы, а DD2 останется в состояние нуля. После второго импульса триггер DD1 возвратится в состояние ноль, а триггер DD2 перейдёт в состояние единицы. При поступлении третьего импульса DD1 перейдёт в состояние единицы, а DD2 останется в предыдущем состоянии единицы. После четвёртого импульса триггеры вернутся в состояние ноль, т.е. счётчик имеет $K_{cч} = 4$.

Отличие от схемы суммирующего счетчика состоит в том, что сигнал для управления триггера DD2 снимается не с инверсного выхода, а с выхода Q1 и переключение DD2 происходит при переходе предыдущего триггера из состояния нуля в состояние единицы.

Ma py a THOPA	Суммир	ующий	Вычитающий			
л⊎ входного	Состояние	Состояние	Состояние	Состояние		
импульса	DD1	DD2	DD1	DD2		
0	0	0	1	1		
1	0	1	0	1		
2	1	0	1	0		
3	1	1	0	0		
4	0	0	1	1		

Таблица 2 – Таблица состояний для двухразрядного счетчика

Исходное состояние триггеров – единичное, осуществляется подачей импульсов на установочные входы *S*. После поступления счетных импульсов состояние счетчика будет меняться в соответствии с таблицей 2, т.е. каждый входной импульс уменьшает показание счетчика на единицу.

Рисунок 11 - Схема 2-разрядного вычитающего счетчика

Рассматриваемые счётчики имеют коэффициент счёта $K_{cq} = 2^n$, где n -число разрядов счётчика. Однако на практике нередко возникает необходимость в счетчиках, коэффициент счета которых отличен от 2^n . Очень часто, например, применяются счётчики с $K_{cq} = 10$ (декадный счётчик), т. е. счетчики, имеющие 10 устойчивых состояний. Принцип построения таких счётчиков заключается в исключении «лишних» устойчивых состояний у счетчика с $K_{cq} = 2^m$, т. е. создание схем, с помощью которых запрещаются некоторые состояния.

В зависимости от того, какие состояния выбираются в качестве рабочих, все счетчики с произвольным коэффициентом счета можно разделить на счетчики с естественным и произвольным порядком счета. В счетчиках с естественным коэффициентом счета счет начинается с нуля и оканчивается числом $K_{cy} = 1$.

Существует ряд схемных решений, позволяющих построить счетчики с $K_{cq} \neq 2^m$, как с естественным, так и с произвольным порядком счета. Наиболее часто встречающимся является способ выделения K_i -го состояния с последующей установкой счетчика в исходное состояние. Способ реализуется с помощью схемы И, на входы которой подключаются прямые или инверсные выходы всех тригтеров, причем у триггеров, которые после поступления K_i -го входного импульса принимают значение единицы, подключаются прямые выходы, а у триггеров, которые находятся в состоянии ноль, – инверсные. При этом после поступления K_i -го импульса на выходе схемы И появляется сигнал единицы, который поступает на все входы R триггеров и устанавливает триггеры в нулевое состояние. В дальнейшем счет повторяется. Для примера на рисунке 12 приведена схема счетчика с коэффициентом счета $K_{cq} = 12$.

Рисунок 12 – Схема суммирующего счетчика с Ксч = 12

При такой схеме исключаются четыре устойчивых состояния, 12-й импульс вызывает появление единичных сигналов на всех входах И, что приводит к переключению всех триггеров в нулевое состояние, т. е. установке счетчика в исходное состояние, после чего счет повторяется.

Реверсивные счетчики в зависимости от схемы управления могут быть двух типов: с одним счетным и двумя управляющими входами и с двумя счетными входами. На рисунке 13 приведена схема 3-разрядного реверсивного счетчика с двумя управляющими входами; *у*_в – вход разрешения вычитания и *у*_с – вход, разрешающий суммирование.

Счетчик работает как суммирующий, если на входе y_c имеется сигнал единицы, и вычитающий, если сигнал единицы присутствует на входе $y_{\rm B}$. Связь между разрядами осуществляется через схему И–ИЛИ, построенную на элементах И–НЕ. При наличии сигнала единицы на шине сложения счетный вход каждого последующего триггера соединяется с инверсным выходом предыдущего, т.е. работает как суммирующий. При наличии сигнала единицы на шине вычитания счетный вход каждого последующего триггера соединяется с прямым выходом предыдущего триггера, т. е. работает как вычитающий счетчик.

Рисунок 13 - Схема 3-разрядного реверсивного счетчика

Счетчики последовательного типа с непосредственными связями не являются быстродействующими, т.к. для установления соответствующего чис-ла на выходе требуется последовательное переключение всех триггеров, и поэтому они получили распространение в дискретных устройствах малого и среднего действия, а также при построении делителей частоты. Более быстродействующими являются параллельные счетчики, в которых счетные импульсы поступают одновременно на счетные входы всех разрядов счетчика, и счетчики переноса [19].

3.3 Шифраторы и дешифраторы кодовых комбинаций

3.3.1 Шифраторы

Шифраторы предназначены для преобразования дискретного сообщения в кодовую комбинацию. Если сообщение непрерывное, то оно предварительно квантуется, т.е. превращается в дискретное сообщение, а затем в виде импульсов тока или напряжения подается на шифратор, с выхода которого эти импульсы снимаются как кодовые комбинации, соответствующие заранее заданному коду [20, 21].

Шифраторы придают импульсам определенные импульсные признаки в соответствии со значением сигнала. Цепи шифратора проходят через контакты или ключевые элементы источников сообщения телеметрии (рисунок 14).

Рисунок 14 – Схема шифратора последовательного 2-частотного кода

В нормальном состоянии колебательный контур LC генератора настроен на частоту f_2 . При генерировании единицы кода и поступлении на вход схемы (база транзистора VT) от источника сообщений отрицательного потенциала, транзистор VT открывается. Вследствие этого на диод VD, включенный в коллекторную цепь транзистора, подается положительное смещение. За счет открытия диода конденсатор C1 оказывается подключенным к управляющей обмотке Y контура LC. При этом контур LC настраивается на более низкую частоту f_1 , которая в этот момент и вырабатывается генератором. Если отрицательный сигнал на входе отсутствует, транзистор VT и диод VD закрыты и конденсатор C1 не подключен к управляющей обмотке Y. При этом формируется сигнал с частотой f_2 .

Шифратор параллельного двухчастотного кода обеспечивает посылку в линии одновременно двух синусоидальных колебаний с разными частотами (рисунок 15).

Рисунок 15 – Схема шифратора параллельного 2-частотного кода Шифратор состоит из ключей Кл1 – Кл6, являющихся повторителями контактов источника сообщений, генераторов синусоидальных колебаний

 $\Gamma 1 - \Gamma 4$ с частотой, соответственно, $f_1 - f_4$ и диодной матрицы, обеспечивающей при замыкании любого из ключей включение двух генераторов. Например, при замыкании ключа Кл1 к шине питания $+U_{\text{пит}}$ подключаются генераторы Г1 и Г2, посылающие в линию частоты f_1 и f_2 . При замыкании ключа Кл2 в линию посылаются частоты f_1 и f_3 . При замыкании ключа Кл6 – f_3 и f_4 .

3.3.2 Дешифраторы

Дешифратором называется устройство, преобразующее совокупность сигналов (кодовую комбинацию), поступивших на входы в уп-равляющий сигнал только на одном из выходов. Число входов дешифратора определяется символов в коловой числом комбинации, а Число выходов дешифратора – выражением $m = 2^n$, где *n* – число входов.

Дешифраторы по принципу построения делятся на одно- и многоступенчатые.

Одноступенча-тые (линейные) дешифраторы (рисунок 16) производят прямое преобразование входных сигналов, поданных в параллельном коде, в выходной сигнал.

Сигнал единицы появится на выходе $Y_{1,}$ если на вход дешифратора поступит кодовая комбинация 000. При поступлении кодовой комбинации 001 сигнал единицы появится только на выходе Y_2 и т. д. (таблица 3), т. е. сигнал

Рисунок 16 – Схема одноступенчатого (линейного) дешифратора

единицы на каждом выходе появляется только при поступлении определенной кодовой комбинации.

Если количество входов логических элементов, используемых для построения дешифраторов, меньше числа символов в кодовой комбинации, то применяются многоступенчатые дешифраторы – пирамидальные и прямоугольные матричные.

Рисунок 17 – Схема пирамидального дешифратора 3-символьного кода Пирамидальные (многоступенчатые)

дешифраторы имеют число ступеней на 1 меньше числа символов в кодовой комбинации, а число элементов И в i-й ступени равно 2^{i+1} , при этом, как правило, используются 2-входовые элементы И (рисунок 17).

Так как данном дешифраторе число символов три (X1, X2, X3), то число ступеней будет две, а количество элементов И в первой ступени – $2^{1+1} = 4$, во второй – $2^{2+1} = 8$.

Недостатком пирамидальных дешифраторов является снижение быстродействия при большом количестве ступеней. По количеству 2-входовых элементов И они экономичнее прямоугольных.

Накопителями информации для воздействия на дешифраторы

при параллельном вводе информации являются RS-триггеры.

Таблица 3 – Таблица истинности для дешифраторов

<i>X</i> 1	$\overline{X1}$	X2	$\overline{X2}$	<i>X</i> 3	$\overline{X3}$	<i>Y</i> 1	Y2	<i>Y</i> 3	<i>Y</i> 4	<i>Y</i> 5	<i>Y</i> 6	<i>Y</i> 7	<i>Y</i> 8
0	1	0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	1	0	0	0	0	0	0
0	1	1	0	0	1	0	0	1	0	0	0	0	0
0	1	1	0	1	0	0	0	0	1	0	0	0	0
1	0	0	1	0	1	0	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0	0	0	0	1	0	0
1	0	1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	1	0	0	0	0	0	0	0	0	1

В тех случаях, когда передается информация для ответственных технологических процессов, фиксация принимаемых комбинаций осуществляется на электромагнитных реле, а дешифратор, чаще всего, строится релейным пирамидальным. Прямоугольные, или матричные дешифраторы содержат первую ступень из нескольких линейных дешифраторов и вторую ступень, представляющую собой схемы совпадения. При этом количество линейных дешифраторов определяется числом групп, на которые разбивается кодовая комбинация.

Рассмотрим схему прямоугольного 2-ступенчатого дешифратора 4символьного кода (рисунок 18). Входная комбинация символов разбита на две группы: X1, X2 и X3, X4, следовательно, первая ступень содержит два линейных дешифратора – ДШ1 и ДШ2, имеющих по четыре выхода каждый.

Рисунок 18 – Схема прямоугольного матричного 2-ступенчатого дешифратора 4-символьного кода

Вторая ступень – матричный дешифратор МД, состоящий из 2-входовых элементов И, на одни входы которых поступают сигналы с линейного дешифратора ДШ1, а на вторые – с дешифратора ДШ2. Недостатком такого дешифратора является большое количество элементов И.

Матричные дешифраторы могут быть реализованы на полупроводниковых диодах, программируемых логических матрицах, интегральных микросхемах. Последние широко используются при проектирования современных кодовых преобразователей для обработки телеметрической информации.

3.4 Распределители импульсов

Распределитель – устройство, обеспечивающее распределение импульзсов во времени и по отдельным электрическим цепям, а также преобразование одного вида импульсной последовательности в другую.

Распределители являются циклически работающими устройствами, на выходе которых сигналы появляются в определённой последовательности. На передающей стороне телеметрической системы распределители преобразуют кодовую комбинацию в последовательность электрических импульсов, а на приёмной стороне, передаваемые по каналу связи импульсы распределяются по выходным цепям.

В зависимости от времени перехода с одной позиции в другую, различают распределители:

- прямого хода, осуществляющие переход во время действия импульса,

– обратного хода, осуществляющие переход во время действия интервала,

 двойного хода, осуществляющие переход во время действия импульса и интервала.

В зависимости от характера работы распределители могут быть непрерывными, работающими независимо от наличия или отсутствия передачи информации, и *стартстопными* – запускаются в ход только при передаче информации и останавливаются по ее прекращении.

Рассмотрим счётно-матричный распределитель, состоящий из генератора импульсов *G*, 3-разрядного счётчика на триггерах *DD*1, *DD*2 и *DD*3 и резисторно-диодной матрицы, состоящей из восьми схем совпадения (рисунок 19).

Вертикальные (соединенные с выходами триггеров) и горизонтальные (соединенные с выходными цепями Y1 - Y8) шины матрицы соединены между собой диодами VD1 - VD24 таким образом, что при любом из возможных состояний счетчика (000 – 111) только на одной из горизонтальных шин будет высокий потенциал (1), а на всех остальных – низкий (0).

При кратковременном нажатии кнопки SB2 все триггеры счетчика по установочным входам R устанавливаются в состояние нуля низким уровнем потенциала, т. е. счетчик устанавливается в исходное нулевое положение. В исходном состоянии распределителя (состояние счетчика 000) диоды VD22, VD23, VD24, подключенные к верхней горизонтальной шине, закрыты высоким уровнем потенциала с инверсных выходов триггеров, а все остальные горизонтальные шины будут зашунтированы хотя бы одним из

диодов низким уровнем с выхода триггера. При замыкании ключа SB1 импульсы с выхода генератора G поступают на счетный вход T триггера DD1, и распределитель начинает работать в циклическом режиме.

По отрицательному фронту первого выходного импульса триггер *DD*1 устанавливается в состояние единицы, показания счетчика – 001, диоды *VD*19, *VD*20, *VD*21 – закрыты, высокий уровень потенциала присутствует на второй горизонтальной шине и выходе распределителя *Y*2.

Рисунок 19 - Схема счетно-матричного распределителя

По отрицательному фронту второго импульса единица записывается на триггере *DD*2, состояние счетчика – 010 и высокий потенциал проходит на выход *Y*3. Далее каждым последующим импульсом образуется соответствующая выходная цепь.

В таблице 4 приведена последовательность изменения состояния триггеров и входов диодно-резисторной матрицы X1, X2, X3 и соответствующая ей последовательность изменения состояния выходов матрицы Y1 – Y8. Из анализа таблицы следует, что при переходе счетчика из состояния 111 в состояние 000, последний обнуляется, и начинается следующий цикл работы распределителя.

<i>X</i> 1	$\overline{X1}$	X2	$\overline{X2}$	<i>X</i> 3	$\overline{X3}$	<i>Y</i> 1	$\overline{Y1}$	<i>Y</i> 3	$\overline{Y3}$	<i>Y</i> 5	$\overline{Y5}$	<i>Y</i> 7	$\overline{Y7}$
0	1	0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	1	0	0	0	0	0	0
0	1	1	0	0	1	0	0	1	0	0	0	0	0
0	1	1	0	1	0	0	0	0	1	0	0	0	0
1	0	0	1	0	1	0	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0	0	0	0	1	0	0
1	0	1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	1	0	0	0	0	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	0	0	0

Таблица 4 – Таблица истинности счетно-матричного распределителя

3.5 Мультиплексоры и демультиплексоры

Мультиплексор представляет собой коммутатор нескольких информационных входов на один выход. Он имеет *n*-информационных входов D_0 ; D_1 ; D_n и *m*-адресных входов A_0 , A_n , вход для подачи импульса синхронизации *C*, прямой *Q* и инверсный \overline{Q} выходы. На рисунке 20, *a* показано символическое изображение мультиплексора с двумя адресными входами A_0 и A_1 . Информационные входы $D_0 - D_n$ соединены с соответствующими выходами источника сообщений ИС.

Рисунок 20 – Схемы мультиплексора (а) и демультиплексора (б)

Каждому информационному входу мультиплексора присваивают номер, называемый адресом. Уровень логического нуля на стробируемом входе Cзапрещает коммутацию любого входа на выход. При подаче сигнала синхронизации на вход C = 1 мультиплексор выбирает один из информационных входов D_i , адрес которого задается двоичным кодом на адресных входах A_i (десятичный эквивалент источников сообщения), и подключает его к выходу Q. В общем случае сигналы с информационных входов $D_0, D_1, ..., D_n$ поочерёдно поступают на выход Q. Демультиплексор представляет собой устройство, имеющее один информационный вход D и m-выходов (Y_0 ; Y_1 ; Y_m), а также n-адресных кодов (A_0 ; A_n) (рисунок 20, δ). Соотношение между числом адресных входов n и числом выходов m определяется выражением $m = 2^n$.

В общем случае сигнал со входа D передаётся на выход Y_i , номер которого в двоичной форме задан на адресных входах. Если на вход D демультиплексора подать константу D = 1, то на выбранном, в соответствии с заданным адресом, выходе будет *логическая единица*, а на остальных – *логический ноль*. В этом случае демультиплексор выполняет функцию дешифратора.

Объединяя мультиплексор с демультиплексором (рисунок 21) можно реализовать устройство, в котором по заданным адресам один из входов D_0 , D_1 , D_2 , D_3 подключаются к одному из выходов Y_0 , Y_1 , Y_2 , Y_m .

Рисунок 21 – Схема преобразователя кодов

Такое соединение *M* и *DM* обеспечивает любую комбинацию входов с выходами. Это позволяет реализовать различные преобразователи одних кодов в другие без дополнительных устройств.

3.6 Радиопередатчики автономных измерительных систем

В распределенных измерительных системах широкое применение находят комбинированные устройства, состоящие из измерительного преобразователя и маломощного радиопередатчика, имеющего автономное питание. При обслуживании таких устройств большое значение уделяется измерению мощности и коэффициента полезного действия передатчика на высоких частотах

В цепях высокой частоты из-за влияния реактивных сопротивлений катушек и паразитных емкостей не применяются приборы с низкоомными входами. Для этих измерений применяются косвенные методы, например, тепловые, — калометрический, фотометрический, болометрический, термисторный, а также метод вольтметра и амперметра [17].

Измерение мощности высокой частоты имеет большое значение при испытаниях радиопередающих устройств, а также при их контроле в эксплуатационных условиях.

Под мощностью передатчика понимается мощность, отдаваемая им в согласованную нагрузку, т. е. в антенну.

Существующие способы измерения мощности высокой частоты в антенне могут быть разделены на следующие две группы:

1) методы измерения тепловых потерь на выходном транзисторе передатчика;

2) методы активного сопротивления.

Определение мощности в антенне *методом измерения тепловых потерь* на выходном транзисторе основано на использовании уравнения баланса мощности оконечного каскада передатчика:

$$P_0 = P_{\rm a} + P_{\rm k} + P_{\rm aht},$$

где P_0 , P_a , P_κ , P_{ahr} – мощности, соответственно потребляемая оконечным каскадом; рассеиваемая на выходном транзисторе; теряемая в контуре; расходуемая на излучение и потери в антенне.

Следовательно, при известных P_0 , P_a и P_κ мощность в антенне можно определить по формуле

$$P_{\rm aht} = P_0 - P_{\rm a} - P_{\rm k}.$$

Мощность, потребляемую оконечным каскадом, можно найти по известным, т.е измеренным, постоянным составляющим тока и напряжения выходного каскада.

Мощность, отдаваемую контуру, легко определить, если известны контурный ток и сопротивление контура. Контурный ток измеряется амперметром, а активное сопротивление контура – каким-либо известным способом, например, методом вариации.

Мощность, рассеивания на коллекторе выходного транзистора можно определить методом калориметра, термостолбика или термометра.

Методы активного сопротивления для измерения мощности высокой частоты основаны на подключении к выходу передатчика эквивалента антенны с известными параметрами и измерении мощности $P_{\rm ант}$, рассеиваемой в активном сопротивлении эквивалента $R_{\rm a}$.

Применение эквивалента антенны позволяет производить настройку и испытание передатчика без излучения мощности. Если измеряется ток I_a в эквиваленте антенны, то мощность передатчика определяется равенством

$$P_{\rm aht} = I_{\rm a}^2 R_{\rm a}.$$

Одновременно с измерением мощности передатчика обычно измеряется и его коэффициент полезного действия, являющийся отношением мощности, отдаваемой в антенну, к мощности, потребляемой передатчиком от всех его источников питания, т.е.

$$\eta = P_{\rm aht}/P,$$

где $P = U_{\mu n} I_{\mu n}$ – мощность источника питания.

3.7 Современные системы многоканальной компьютерной регистрации сигналов

Системы многоканальной регистрации сигналов с возможностью их цифровой обработки реализуются на персональных компьютерах и высокоскоростных модемах для передачи данных. Источниками информации являются различные аналоговые и цифровые датчики телеметрии с уровнями сигналов, обычно, от 0,001 до 10 В и частотами от 0 до 200 кГц.

Комплексы сбора измерительной информации проектируются с использованием унифицированных систем передачи данных СПД и вместе с программой цифровой обработки сигналов и типовых аппаратных средств выполняют все возложенные функции (рисунок 22) [21, 22].

Нижний уровень системы контроля может содержать комплекс измерительных преобразователей, в том числе датчиков акустических сигналов для контроля буксовых узлов.

Типовой локальный фрагмент системы сбора данных телеметрии представляет собой комплекс, состоящий из двух программных модулей: системы управления базами данных СУБД и архив базы записей. Комплекс может работать под операционными системами Windows NT/ 2000//W98/MX. Требования к аппаратной базе: Intel Celeron, P3, P4 (линия AMD-процессоров) с «производительностью» от 350 МГц (в зависимости от числа каналов, обрабатываемых комплексом), RAM – от 64 Мб, HDD – для ведения архива, не менее 4,2 Гб. Для сопряжения с различными источниками сигналов могут использоваться адаптеры, связанные с компьютером по кабельной сети при помощи стандартных модемов.

Основные рекомендуемые функции системы:

- изменение многоуровневой архитектуры комплекса;

 хранение записанной измерительной информации в базе данных, воспроизведение, анализ и обработка. Все записи хранятся в файловой структуре, связанной с СУБД ACCESS;

автоматическое определение параметров;

- отображение текущего состояния каналов;

– контроль сквозного канала, комментирование событий, составление описаний.

Любой зарегистрированный сигнал можно неоднократно воспроизвести, независимо от времени его приема и обработки. Обеспечен доступ к любой записи по выбору оператора, независимо от очередности приема. Любую запись или выбранную группу записей можно сохранить на другом жестком или CD-диске, на сетевом ресурсе (экспорт, импорт записи и баз);

– сортировка, статистическая обработка и фильтрация принятой информации по различным критериям. Комплекс позволяет сортировать записи по дате приема, продолжительности измерений, каналу записи информации, отфильтровывать и выделять записи по экстремальным критериям.

– перенос и копирование из одной базы в другую. Эта функция предназначена для создания выборочных архивов и архивов длительного хранения, в том числе на внешних носителях.

Пример инсталляции программного обеспечения системы. Программное обеспечение поставляется обычно в виде готовой к работе системы при поставке заказного компьютера и на CD-диске для самостоятельной инсталляции.

Для инсталляции следует запустить и выполнить файл setup.exe.

После инсталляции могут разворачиваться следующие файлы.

PhRec.exe – программа записи – СУБД, поставляется в защищенном от несанкционированного копирования и использования виде (с помощью электронного ключа). Заказанная конфигурация и требуемое количество каналов обеспечивается HASP-ключом.

PhView.exe – программа работы с архивом, может работать на нескольких компьютерах в сети и на автономном рабочем месте.

Phdel.exe – программа, поддерживающая ведение архива заданной глубины (автоматическое удаление из базы записей старше заданного времени).

vxdapi.dll, lusbapi.dll, Usb_Adc.dll – библиотечные программные модули.

Phrec.mdb – файл со структурой базы записей, содержит описание полей базы (структура СУБД ACCESS).

Uninstall.exe – программа деинсталляции комплекса.

Hasp_instel – программа-инсталлятор драйвера HASP – hdd32.exe.

Cool Edit – пакет программ цифровой обработки файлов.

Pulse – сервисная программа определение источника информации.

Multi – программы инсталляции, драйвера и описание многоканальных плат ввода в конфигурации PCI и USB.

Далее устанавливается требуемое количество плат АЦП (после установки операционной системы). Выбор линейных входов для АЦП осуществляется автоматически через коммутационную панель. Оптимальное усиление по каждому каналу подбирается вручную, в зависимости от типа используемых плат АЦП. Чаще всего это 0,6–0,9 от максимума. Эта процедура делается один раз. Выбранное значение запоминается системой.

В операционной системе компьютера следует установить необходимые драйверы по адресу «мой компьютер/свойства/диспетчер устройств/компьютер». Далее – вывести список всех драйверов – полный список устройств – стандартный компьютер. При необходимости переустановить драйвера материнской платы и оборудования.

Для нормальной работы платы АЦП устанавливается монопольное использование – распределение прерывания, для чего можно зарезервировать за номером PCI слота, где стоит плата, прерывание. При отсутствии свободных – в BIOS отключить, например, 2-й СОМ-порт и закрепить за платой (слотом) IRQ3. Затем нужно провести инсталляцию платы (/Lcard/ PCI /setup/setup.exe). В настройках «панель управления» появиться иконка Lcard – запустить ее. При успешной инсталляции должны отобразиться закрепленные за платой ресурсы.

При конфигурации USB с модулями E-440 или USB ADC надо подсоединить устройство к USB-разъему. После запроса системы установить драйвера, указать путь на CD-диске \Multi\USB ADC или USB E-440\Driver. Проверить корректность установки в «Диспетчере устройств».

После инсталляции комплекса (выполнена программа setup.exe) в системном реестре создастся ветвь HKEY CURRENT USER\Soft-ware\Phrec. При выходе из программы «Phrec» созданные в процессе работы настройки автоматически сохраняются в системном реестре. Комплекс готов к работе. В процессе работы все текущие настройки, параметры каналов, размеры окон и полей будут храниться в системном реестре. При желании можно сделать копию рабочих настроек, сохранив ветвь HKEY_CURRENT_USER\Software\Phrec из системного реестра в файл PhRec.reg.

Программа «СУБД» выполняет следующие функции по обработке входного сигнала:

 настройка входного оборудования на пороговый уровень входных сигналов;

 при наличии сигнализации, непрерывный анализ и обработка сигналов на базе алгоритмов цифровой обработки;

– усиление и выравнивание уровня записи согласно настройкам каждого канала;

 процедуры старта и стопа записи по энергетическим параметрам измеряемого сигнала;

- сжатие сигнала по заданному алгоритму;

- запись в архив вместе с атрибутами – характеристиками работы канала;

– текущее отображение состояния канала (параметры сигнализации, уровень сигнала, время начала записи и ее продолжительность).

Общий вид панели управления СУБД. Для функционирования программы СУБД предусмотрено использование рабочей панели программы записи, представленной на рисунке 23.

🚰 Канал 🛛 🎼 Звук 🔳 Запись 🔳 Пауза 🛛 Настройка Протокол 🛛 Пароль										
Ν	Канал	Лн.	Hn.	Зп.	Время	Зв.	Уровень	Номер	Коммент	арий
1	Канал 01						-67			
2	Канал 02						-72			
3	Канал 03			۲	1:08	0 ;	-23 🗾		сигнал р	езервного датчика
4	Канал 04						-58			
Г										
14	14.04.2003 13:00:54 16977 Мб Свободно									

Рисунок 23 – Рабочая панель программы записи

Число каналов определяется заказанной конфигурацией.

В первой строке – кнопки-иконки команд и настроек. Назначение каждой высвечивается текстом при выборе курсором:

– Канал – настройка выбранного канала (строка выбранного канала высвечивается синей полосой при «щелчке» левой кнопкой «мышки»);

- Запись – ручное включение/выключение записи;

- Пауза – режим приостановки записи;

- Настройка - общие параметры работы системы;

Канал – условное наименование канала-тракта, которое задается названием в канальных настройках;

– Лн – линия, индикатор состояния канала при обработке сигнализации;

– Нп – направление, индикатор направления соединения;

 Зп – запись, индикатор включения записи результатов измерений (при наличии сигнализации по командам или при выполнении условий запуска –

наличие требуемого уровня сигнала заданное время);

Время – длительность записи по каналу;

 Уровень – уровень в дБ по данному каналу после программного и автоматического усиления с графическим индикатором;

 Номер – отображение адресного содержания сигнализации (рисунок 24).

Общие настройки	×
Источники сигнала Запись Типы каналов Запуск АТС	
Использовать АЦП Настройка	
🔽 Emu10Kx Audio [D400]	
C-Media Wave Device	
Сквозной канал	
C-Media Wave Device	
ПК Птмена	

Рисунок 24 – Закладка «Источники сигнала»

63

При конфигурации «СУБД-USB ADC» аппаратное усиление не регулируется.

Уровень входного сигнала установлен в диапазоне 50 мВ – 1,5 В.

В этой закладке выбирается:

 путь к выбранному каталогу записи, указывается предельный размер места на носителе – жестком диске, по исчерпанию которого происходит оповещение оператора. По достижению лимита места на диске запись прекращается;

 удобная для работы структура хранения файлов с результатами измерений. Все файлы распределяются по каталогам (атрибуты записанного сеанса хранятся в файле базы данных);

– типовая частота оцифровки аналогового сигнала – 50 Гц, что достаточно для качественной записи в полосе до 200 кГц. Для запуска нескольких копий программы в командной строке указывается ключ реестра, например, PHREC.EXE – Second, где «Second» имя раздела в системном реестре (аналогичного разделу Record) с характеристиками данной группы каналов;

Закладка «Типы каналов». Здесь настраиваются характеристики для группы одинаковых каналов. Для каждого канала нет необходимости проводить настройку, он относится к соответствующему типу. Можно создавать новые группы со своими характеристиками.

Закладка «Запуск» содержит настройки вида старта программы (рисунок 25). После первого запуска программы зайти в поле настроек (закладка: Команды – Настройка – Запуск).

Рисунок 25 – Закладка «Запуск» запущена. Ввод пароля позволяет

неопытным оператором.

Выбрать требуемый режим:

1 Прятать при сворачивании. При минимизации программа и иконка исчезают с экрана. Для активизации используется комбинация клавиш Ctrl–Shift–F11.

2 Запрашивать пароль при запуске. Если активна эта установка и задан пароль, то при запуске программы и при восстановлении из свернутого вида будет запрошен пароль. Если указан неправильный пароль, программа не будет избежать случая смены настроек

З Если выбран режим «прятать при сворачивании» и «запускать в свернутом виде», программа записи сразу при старте (например, с автозапуска) переходит в работу в свернутом виде. Вывод рабочей панели – комбинацией клавиш. Номер порта удаленного доступа применяется совместно с программой «PhClient» для разделения потоков данных между разными программами сетевых машин.

Пример индивидуальной настройки канала и сигналов. Щелкнув правой кнопкой «мыши» по строке выбранного канала выходим в режим настройки канала. В данную настройку можно войти через кнопку «Канал». В этом поле настройки можно:

- включить/отключить канал;

– присвоить логическое название каналу, которое будет отображаться в таблице каналов рабочей панели СУБД и в базе–архиве;

– описать индивидуальные характеристики или отнести данный канал к группе каналов с аналогичными настройками (строка «тип канала» – Тип 1).

Параметры настройки задаются в следующем поле (щелкнуть по кнопке «настроить»). Здесь определяется алгоритм сжатия. Алгоритм сжатия (кнопка «Изменить») выбирается из предлагаемого списка (все алгоритмы, установленные операционной системой и другими программами). Рекомендуемые подпрограммы и алгоритмы:

- РСМ - стандартная подпрограмма оцифровки;

– A-law, т-law – подпрограмма РСМ, адаптированная для сильных и слабых сигналов;

- группа подпрограмм *PCM*-*AD PCM* для 2-кратного сжатия *PCM*;

- *SM* 6.10 - подпрограмма с хорошим соотношением сжатия и качества (5,54 Мб/ч);

– Windows Media Audio V2 (Div-X) – обладает промежуточными свойствами сжатия между CELP4.8 и GSM6.10;

– *предзапись*, записывает указанный интервал времени до срабатывания автоматического старта записи по достижению заданного уровня сигнала (автопуска).

Закладка «Обработка» (рисунок 26) определяет следующие параметры:

 усиление сигнала – кратность программного усиления, определяет необходимый уровень сигнала (следует использовать усиление платы АЦП;

— *уровень*, *db* — определяет уровень, до которого происходит усиление;

 – динамический диапазон – определяет степень усиления сигнала.

Закладка «Старт/Стоп». Здесь определяются следующие параметры:

Настройка типа канал	la	×
Запись Обработка	Старт/стоп Сигнализация Рас	писание
Усиление сигнала	1:1 💌	
🔽 APY	Уровень, dB	-10 🜻
	Динамический диапазон, dB	10 🜲
	Постоянная времени, ms	100 🜻
	ОК От	мена

Рисунок 26 – Закладка программной обработки сигнала «Обработка» — уровень сигнала — определяет в относительных единицах порог «действительного значения сигнала». Если сигнал превышает этот уровень и задан режим старта по уровню, автоматически включается запись;

— «*Старт*», «*Стоп*» и «*Пауза*» — производят настройку механизма автопуска. Если заданный уровень сигнала будет присутствовать указанное в секундах время, начнется/закончится запись.

Закладка «Сигнализация». Обработка сигнализации – режим работы с различными адаптерами и сигналами управления. Включается процедура определения сигналов от адаптеров (например, сигналы стандартов DTMF, MF и др.). Возможно сопряжение сигнализации и информации принятой по порту RS232, например, от удаленных источников информации.

Опция служебных сигналов исключает запись в файл собственно сигналов сигнализации (запись начинается после их окончания). Для определения разрядности (длины) служебных сигналов вводятся шаблоны.

Закладка «Расписание». Здесь задается расписание работы функции начала записи по превышению уровня (автопуск). Если нет ни одной строки в расписании, то запись включается только по установкам «Старт/Стоп».

Все настройки находятся в созданной при инсталляции ветви реестра: HKEY_CURRENT_USER\Software\Phrec.

Для каждого типа (групп каналов с одинаковыми характеристиками) можно задать критерий точности цифрового преобразования в пределах от 5 до 15:

5 – максимальный диапазон уровня входного сигнала для определения чувствительности и максимальная вероятность ложного определения сигналов (в принятом сигнале могут определяться сигналы сигнализации);

15 – минимальный диапазон и минимум ложного срабатывания.

Параметр «fft limit» – по умолчанию равен 8.

Если параметр «Connect» = 1, то происходит автоматическая установка платы АЦП на линейный вход, если «Connect» = 0 – система оставляет значения, присвоенные оператором ранее и сохраненные операционной системой (если необходимо выбрать линейный вход).

Пример организации архива. Программа «PhView». Программа «PhView» работает с базой записей, созданных программой СУБД. Назначение всех значков-команд отображается при подводе указателя «мыши». Поля таблицы регулируются по размеру (рисунок 27).

Основные возможности:

– сохранение в файле выделенного фрагмента записи. при воспроизведении можно выделить фрагмент командами «начало – конец»;

- работа с другим архивом – команда «базы данных» «открыть папку»;

- работа с архивом на разных сетевых рабочих местах;

– размер всех полей таблицы регулируется и запоминается.

		Архи	3 - C:\tmp						×	
Ба	за,	данных Фа	йл Вид							
	1	X 👸		↔ > ;	🗠 🚖 🔁 🖸:00	:09				
Í										
	1			00				iai 🗾		
	26.	12.2000	■ 17.12.2002 ■	C (14)						
	N	Канал	Время	Длина		∆ Напр.	Комментарий	Размер		
	14	117	17.10.2002 13:00:54	0:00:27	Входящий	<u>é</u>	работа с протоколом АТС	46 108		
	16	123	18.11.2002 11:32:28	0:00:58	5805912~3451541		номер из протокола АТС и DTMF	96 484		
Π	2	Канал 02	14.12.2002 17:49:18	0:00:10	231985*1	<u>é</u>	работа с АОН	45 696		
	4	Канал 04	31.10.2002 23:58:14	0:02:45	2258442~1234567	- 68	FAX 23:59:46	270 358		
Π	2	Канал 02	13.12.2002 22:52:01	0:00:35	1236547	- 6		144 000		
Π	1	Канал 01	29.11.2002 18:40:35	0:00:14			44*16 pcm образцы разных	1 248 610		
	2	Канал 02	29.11.2002 18:59:01	0:00:36			8×4 adpcm алгоритмов	142 690		
Π	1	Канал 01	29.11.2002 18:19:55	0:00:59			8×8 gsm сжатия	98 110		
	1	Канал 01	29.11.2002 18:50:04	0:00:14			8*8 pcm	120 610		
Π	1	Канал 01	29.11.2002 18:52:46	0:00:24			a-law 8×8	200 608		
Π	1	Канал 01	29.11.2002 19:04:46	0:00:41			celp 4.8	25 808		
	1	Канал 01	29.11.2002 18:54:53	0:00:47			m-law 8×8	384 608		
	1	Канал 01	29.11.2002 19:07:32	0:00:45			msoft adpcm	189 056		
	3	Канал 03	24.05.2002 18:41:14	0:02:18			музон	226 484		
	1	Канал 01	29.11.2002 18:48:46	0:00:17			22×16 pcm	768 610		
Π	1	Канал 01	29.11.2002 18:34:43	0:00:29			22*8 gsm	133 860		
	1	Канал 01	29.11.2002 18:33:15	0:00:36			22*8 pcm	808 610		
		Всего	17	0:13:14				4 950 310	-	
17	7.12	2.2002 18:59	:45 Запись: 9							

Рисунок 27 – Программа записи «PhView»

Для управления режимом воспроизведения используются следующие функции:

 встроенный редактор для создания текстового файла с возможностью управления воспроизведением «горячими» клавишами;

- воспроизведение/стоп/пауза;

- индикация времени от начала записи и вывода экстремальных значений;

 бегунок точки воспроизведения, который вручную можно двигать.

Для достижения приемлемого качества при приеме результатов измерений с помехами следует использовать полосовой фильтр (рисунок 28).

При длительной работе программы записи (особенно при большом количестве каналов) необходимо периодически оптимизировать файл «phrec.mdb» в папке «СУБД», где находится архив записей, для чего следует открыть

этот файл программой «Access» (СУБД из состава Microsoft Office).

В закладке «сервис» вызвать функцию «служебные программы» – «сжать и восстановить базу данных».

Если Access не установлен, процедуру оптимизации можно провести переписыванием всей базы во временный каталог (для чего выделить все записи и выполнить процедуру «Сохранить записи в папку»), затем заменить файл Phrec.mdb в текущем каталоге архива вновь созданным.

При достаточно больших объемах базы (более 10³ записей) программа замедляет работу из-за подсчета состояния базы. Эту функцию можно убрать командой – «Вид» – «Показывать сумму», а также ограничить глубину отображения базы при старте в поле отбора «Дата ОТ». Эти параметры можно настроить в системном реестре.

Программа PhDel реализует функцию поддержания архива заданной глубины. Ее можно вставить в автозапуск (компьютер периодически перезагружают) или запустить планировщик задач. У программы один параметр, который передается через командную строку – количество астрономических часов, которые надо оставить в базе.

Сетевой доступ. Программа PhClient устанавливается на сетевом компьютере и предназначена для контроля записи по любому выбранному каналу в реальном времени. На экране отображается образ панели главной машины – сервера, где установлена программа записи. Оператор клиентского рабочего места может наблюдать всю информацию о состоянии каналов. В настройках указывается IP адрес или логическое сетевое имя компьютера записи – сервера и номер порта (7777 по умолчанию, такой же, как на сервере для привязки пакетов данных к процессу).

Аппаратный модуль и интерфейс. Аппаратная часть комплекса построена на базе:

– стандартных карт, совместимых с Soundblaster Creative, для версии на 1–10 каналов (до 6 РСІ плат АЦП);

 специализированной платы ввода аналогового сигнала, позволяющей обрабатывать до 32 каналов на 1 плате. Одновременная работа в едином канальном пространстве до трех PCI плат;

– внешнего модуля с АЦП и USB-интерфейсом (модели модулей: E-440 и USB_ADC).

Для сопряжения с источниками сигналов различных напряжений и гальванической развязки используются адаптеры. Связь адаптеров с компьютером реализована через коммутационную панель. Питание адаптера +5 вольт. Базовая реализация адаптера – 2 канала.

Функции адаптера:

– формирование сигналов управления (в DTMF коде) по анализу внешних сигналов сигнализации, и передача их в компьютер;

 формирование и передача сигнала с заданными (заранее запрограммированными) параметрами на внешние цепи и устройства;

гальваническая развязка;

- транслирование внешних сигналов для записи.

4 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СХЕМОТЕХНИЧЕСКОГО МОДЕЛИРОВАНИЯ

4.1 Общие сведения о программах моделирования Electronics Workbench и Multisim

Multisim – это новая версия программы электронного моделирования Electronics Workbench, которая позволяет создавать принципиальные электрические схемы разнообразных функциональных цифровых и аналоговых узлов [4]. Она включает в себя версию Multicap, что делает ее универсальным средством для программного описания и последующего тестирования схем.

Использование версии программы Multisim 10.0 позволяет объединить процессы разработки электронных устройств и тестирования на основе интерактивного технологии виртуальных приборов SPICEлля моделирования и анализа электрических цепей, используемых в схемотехнике. Эта платформа связывает процессы тестирования И проектирования, предоставляя разработчику электронного оборудования гибкие возможности технологии виртуальных приборов.

Совместное использование версии программного обеспечения Multisim 11.0 для моделирования электрических цепей и среды для разработки измерительных систем LabVIEW позволяет сравнивать теоретические данные с реальными непосредственно в процессе создания схем, что снижает количество проектных итераций и число ошибок в прототипах.

Multisim Версию программы 11.0 можно использовать для принципиальных электрических интерактивного создания схем И моделирования их режимов работы, что дает возможность получить всесторонний практический опыт на всем протяжении полного цикла проектирования электронного оборудования. При помощи этой платформы можно легко перейти от теории к практике, создавая новые схемные решения и углубляя свои знания в основах проектирования принципиальных электрических схем [20].

База данных компонентов включает более 1200 SPICE-моделей элементов, а также более 100 моделей импульсных источников питания. Помимо этого, в новой версии программного обеспечения появился помощник Con-vergence Assistant, который автоматически корректирует

параметры SPICE, исправляя ошибки моделирования. Добавлена поддержка моделей МОП-транзисторов стандарта BSIM4, а также расширены возможности отображения и анализа данных, включая новый пробник для значений тока и обновленные статические пробники для дифференциальных измерений.

4.2 Программная среда Multisim

Интерфейс пользователя состоит из нескольких основных элементов, которые представлены на рисунке 29.

Рисунок 29 – Программная среда Multisim

Окно разработки (DesignToolbox). В окне разработки находятся **VПравления** различными элементами схемы. средства Закладка «Доступность» (Visibility) позволяет скрыть или отобразить слои схемы рабочей области. Закладка «Иерархия» (Hierarchy) отображает взаимосвязь между файлами открытого проекта в виде древовидной структуры. Закладка «Проект» (Project) содержит информацию об открытом проекте. Пользователь может добавить файлы в папки открытого проекта, изменить доступ к файлам и создать архив проекта.

Глобальные настройки (Global Preferences). Глобальные настройки управляют свойствами среды Multisim.

Доступ к ним открывается из диалогового окна «Свойства» (Preferences). Выберите пункт Опции/глобальные настройки (Options/ Global Preferences). При этом откроется окно «Global Preferences» (рисунок 30) со следующими закладками:

 – Paths (Путь) – здесь можно указать путь к файлам баз данных и другие настройки;

 – Save (Сохранить) – здесь можно настроить период автоматического сохранения и записать данные эмуляции;

 – Parts (Компоненты) – здесь можно выбрать режим размещения компонентов и стандарт символов (ANSI или DIN). Также здесь находятся настройки эмуляции по умолчанию;

– General (Общие) – здесь можно изменить поведение прямоугольника выбора, колеса

Рисунок 30 – Окно Global Preferences с закладкой General

мыши и инструментов соединения и автоматического соединения.

Sheet Properties		Instate	X
Show 1.0kohm Test R1 01 01 01 01	Component Component Cabels RefDes Values Initial conditions Tolerance	Variant data Variant data Attributes Symbol pin names Footprint pin names	Connectors Con-page names Global names HB/SC names Off-page names
Net names Show all Use net-sp Hide all	ecific setting	Bus entry Show labels Show bus ent	ry net names
Color White backgroun	TEST_PT	Background Selection Wire Component with Component with Virtual componen	model
Save as default			
	C	OK Cancel	Apply Help

Рисунок 31 – Закладка «Свойства листа»

Настройка листа (Sheet Proper-ties). Диалоговое окно настройки свойств листа (Sheet **Properties**) используется для изменения свойств свойства каждого листа. Эти сохраняются с файлом схемы, поэтому если проект открывается на другом компьютере, настройки не изменяются (рисунок 31).

Настройки листа сгруппированы в следующие закладки:

 Сігсці (Схема) – здесь можно выбрать цветовую схему и внешний вид текста рабочей области; – Workspace (Рабочая область) – здесь можно настроить размер листа и его свойства;

- Wiring (Соединение) - здесь находятся настройки соединений и шины;

 – Font (Шрифт) – здесь можно выбрать шрифт, его размер и начертание для текстовых элементов схемы;

- PCB (Печатная плата) - здесь находятся настройки печатной платы;

– Visibility (Доступность) – здесь можно скрыть или отобразить дополнительные слои комментариев.

Подробное описание каждого свойства листа можно посмотреть в руководстве пользователя Multisim User Guide или в файле справки Multisim help file.

Рисунок 32 – Диалоговое окно «Настройка»

Настройка пользовательского интерфейса. Пользовательский интерфейс Multisim можно настроить на свой вкус, изменения зависят друг от друга. Панели инструментов можно закрепить в любом месте и изменить их форму. Инструменты всех панелей также можно изменять и создавать новые Система панели. меню также полностью настраивается, вплоть до контекстных меню разных объектов (рисунок 32).

Горячие клавиши клавиатуры тоже можно настроить. Любой

команде меню или панели инструментов можно назначить свою клавишу.

Чтобы назначенные клавиши не пересекались с командами интерактивных элементов, следует назначать комбинации клавиш, такие как Ctrl-Е. Например, для листа схемы и описания можно назначить свою комбинацию горячих клавиш и дополнительных окон. Для настройки пользовательского интерфейса выберите пункт Опции/Настроить пользовательский интерфейс (Options/Customize User Interface).

С помощью диалогового окна «Настройка» (Customize) (рисунок 33) можно создавать и изменять панели инструментов, назначать горячие клавиши, настраивать и создавать новые меню, а также изменять стиль пользовательского интерфейса.

Рисунок 33 - Настройка меню
4.3 Компоненты программы

Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями компонентов: реальными (*real*) и виртуальными (*virtual*). Необходимо понимать различия между ними, чтобы в полной мере воспользоваться их преимуществами.

У реальных компонентов, в отличие от виртуальных есть определенное, неизменяемое значение и свое соответствие на печатной плате (рисунок 34).

U2 – микроконтроллер; U1B – логический элемент НЕ, Q1 – транзистор U3 – 7-сегментный дисплей; D1 – диод, V1 – источник напряжения, Рисунок 34 – Символы различных компонентов

Виртуальные компоненты нужны только для эмуляции, пользователь может назначить им произвольные параметры. Например, сопротивление виртуального резистора может быть произвольным, даже 3,86654 Ом. Виртуальные компоненты помогают разработчикам при проверке с помощью схем с известными значениями компонентов. Виртуальные компоненты также могут не соответствовать реальным, например, как 44контактный элемент отображения микроконтроллера U2, показанный на рисунке 34.

В Multisim есть и другая классификация компонентов: аналоговые, цифровые, смешанные, анимированные, интерактивные, цифровые с мультивыбором, электромеханические и радиочастотные.

Интерактивные компоненты. Некоторые элементы схемы Multi-tisim могут реагировать на действия пользователя

Изменение этих элементов сразу отражается на результатах моделирования. Компоненты управляются с помощью клавиш, указанных под каждым элементом. Например, на рисунке 35 приведено несколько компонентов.

Так, например, клавиша *А* увеличит сопротивление потенциометра до 100 % от указанной величины (1 кОм). Чтобы уменьшить сопротивление, удерживайте нажатой Shift и нажмите А. Пробел открывает или закрывает выключатель на правом рисунке.

Рисунок 35 – Примеры интерактивных компонентов

«Горячую клавишу» можно выбрать следующим образом: при двойном щелчке мыши откроется окно, показанное на рисунке 36, в выпадающем меню которого можно выбрать нужную клавишу.

В таблице 5 приведена структура построения информации о компонентах сгруппированная по трем разделам: поле, описание и пример.

otentiometer						— X
Label Display Value	Fault	Pins	Variant	User fields		
Resistance (R)	1k	Ŧ	Ω			
Key:	A	•				
Increment:	100		%			
Component type:						
Hyperlink:						
Layout settings						
Footprint:				Ec	lit footprint	
Manufacturer:						_
Replace		ОК		Cancel	Info	Help

Рисунок 36 – Выбор «горячей клавиши»

Поле	Описание	Пример
База данных	Название базы данных Multisim, в которой хранится данный компонент	Пользовательская (User)
Группа (Group)	Название группы, к которой принадлежит данный элемент	TTL
Семейство (Family)	Название семейства, к которому принадлежит данный элемент	74S
Компонент (Component)	Название данного компонента	74S00D
Символ (Symbol)	Символ (ANSI или DIN), который отображает компонент на схеме	
Назначение (Function)	Описание компонента	4 двухконтактных элемента И–НЕ

Таблица 5- Информация о компонентах

	(Quad 2-Inputnand)

Характеристики компонентов. В проводнике компонентов (рисунок 37) отображаются соответствующие поля.

┉禄Ҟѷ฿ฃ๚҄๚๛ฃฃ๛๚๛฿๎๚๛฿ 2**- 1**

Рисунок 37 – Вкладка «Элементы» (Parts) или панель инструментов «Компоненты» (Component)

Проводник компонентов (Component Browser) – это место, где выбираются компоненты, чтобы разместить их на схеме (рисунок 38).

atabase:	Component:		Symbol (ANSI)	OK
Master Database 🔹	1m	н		OK
Group:	550 LL			Close
™ Basic ▼	0.55m		<u></u>	Search
amily:	⁵⁶⁰ μ			Detail repor
	0.56m			View mode
RATED_VIRTUA -	600µ.			Liele
M RPACK	0.6m		Save unique component on placement	пер
SWITCH	615µ.		Component type:	
E TRANSFORMER	620µ			
ENON_LINEAR_T	645µ		sho types	
冕 RELAY	650µ		Tolerance(%):	
	680µ		0	
SOCVETS	0.68m			
	700µ		Model manufacturer/ID:	
BE SCH_CAP_SYMS	750µ		Generic / VIRTUAL_INDUCTANCE	
	0.75m			
- CAPACITOR	800µ			
INDUCTOR	820µ		Footprint manufacturer/type:	
- CAP_ELECTROL	0.82m		<no footprint=""></no>	
	anotr		IPC-7351 / Chip-L0402	(
	910µ		IPC-7351 / Chip-L0603	
	ateh	_	Hyperlink:	
	10000	-		

Рисунок 38 – Проводник компонентов

Горячая клавиша по умолчанию для размещения компонента – Ctrl–W или двойной щелчок мышью. Курсор мыши примет форму компонента, пока вы не выберите место на схеме для компонента.

Для поиска просто начните набирать название компонента, и проводник автоматически подберет подходящие элементы. Кнопка Поиск (Search) открывает расширенный поиск.

В Проводнике компонентов отображается текущая база данных, в которой хранятся отображаемые элементы. В Multisim они организованы в

группы (groups) и семейства (families). Также в проводнике отображается описание компонента [поле «Назначение» (Function)], модель и печатная плата.

Символ звездочки («*») заменяет любой набор символов. Например, среди результатов запроса «LM*AD» будут «LM101AD» и «LM108AD».

Любому компоненту соответствует множество моделей. Каждая модель может ссылаться на различные физические характеристики компонента. Например, у операционного усилителя LM358M снаружи пять контактов, но в этой модели из них используется только три, контакты питания не задействованы. Более подробную информацию о моделях можно найти, выбрав модель в поле производитель/идентификатор (Model Manuf.\ID) и кликнув по кнопке Moдель (Model).

Базы данных. В Multisim есть базы данных трех уровней (рисунок 39):

– из Главной базы данных (Master Data base) можно только считывать информацию, в ней находятся компоненты Electronics Workbench;

– пользовательская база данных (User Data base) соответствует текущему пользователю компьютера. Она предназначена для хранения компонентов, которые нежелательно предоставлять в общий доступ;

– корпоративная база данных (Corporate Data base) предназначена для компонентов, доступны другим пользователям по сети.

🖬 Database Manager	
Family Components RLC components User field titles	
Family tree: Image: Sources Image:	Database: Master Database Group: Sources Family: POWER_SOURCES Component RefDes Default prefix: V Family Load Edit @ ANSI DIN Delete empty familes Add family Delete family
	Close About Help

Рисунок 39 – Проводник баз данных

Средства управления базами данных позволяют перемещать компоненты, объединять две базы в одну и редактировать их. Все базы

данных разделяются на группы, которые, в свою очередь, – на семейства. Когда пользователь выбирает компонент и помещает его в схему, создается новая копия. Все изменения с ней никак не затрагивают информацию, хранящуюся в базе данных. Если изменить компонент в базе данных, то уже существующие копии компонентов останутся такими же, как и были.

Изменения затронут новые компоненты этого типа. При сохранении схемы вся информация о компонентах хранится в файле Multisim. При загрузке пользователь может оставить загруженные элементы в том виде, как они есть, или обновить компоненты данными из базы с аналогичными именами.

Примечание Чтобы открыть проводник баз данных, выберите (Tools/Database/Database Инструменты/Базы данных/Проводник баз данных Manager); чтобы редактировать элементы проводника, скопируйте их в пользовательскую или корпоративную базу данных.

Перемещение, поворот, выбор и соединение компонентов в электрических схемах. Перемещение, поворот и выделение. После выбора компонентов из базы данных они размещаются на схеме и соединяются между собой. Двойной щелчок по компоненту в проводнике прикрепит его к курсору. После этого можно поместить элемент на схему, просто кликнув в желаемом месте.

В это время и после установки компоненты можно повернуть. Чтобы это сделать в первом случае, нажмите Ctrl+R. Чтобы повернуть установленный компонент, выделите его и тоже нажмите Ctrl+R или выберите в контекстном пункте пункт повернуть на 90° по или против часовой стрелки (рисунок 40).

*	Cut	Ctrl+X
Ē₽	Copy	Ctrl+C
6	Paste	Ctrl+V
×	<u>D</u> elete	Delete
	Flip <u>H</u> orizontal	Alt+X
	Flip <u>V</u> ertical	Alt+Y
⊿⊾	90 Clock <u>w</u> ise	Ctrl+R
4	90 C <u>o</u> unterCW	Ctrl+Shift+R
	Bus Vector Connect	
	Replace by Hierarchical Block	Ctrl+Shift+H
	Replace by Subcircuit	Ctrl+Shift+B
	Replace Components	
	Save Component to DB	
	Edit Symbol/Title <u>B</u> lock	
	Lock/Unlock name position	
	Reverse Probe Direction	
	Ch <u>a</u> nge Color	
	Font	
P	Prop <u>e</u> rties	Ctrl+M
	NI ELVIS II Instrument Enabled in	Simulation

Рисунок 40 – Поворот компонента

Чтобы выбрать компонент, просто щелкните по нему мышью.

Для выбора нескольких компонентов прижмите кнопку мыши и перемещайте ее, рисуя прямоугольник выбора вокруг нужных компонентов. Выбранные компоненты обозначаются пунктирной линией. Можно выбрать отдельные элементы, например, значение или метку компонента. Выбор осуществляется одинарным щелчком мыши по нужному элементу. Клавиша Shift позволяет добавлять или снимать выделение с нескольких компонентов.

Компоненты можно заменять на другие с помощью их контекстного меню, пункта «Заменить компонент(ы)» (Replace Component(s) (рисунок 41).

Соединение. В Multisim используется безрежимный принцип работы: действие мышью зависит от положения курсора, нет необходимости выбирать инструмент или режим при работе в Multisim. Курсор изменяет

DIODES_VIRTUAL						×
Label Display	Value	Fault	Pins	Variant	User fields	
Value:	Ī	DIODE_V	IRTUAL			
Manufacturer:	•	Seneric				_
Function:	Γ					_
Hyperlink:	 					
					Edit component in	DB
					Save component to	DB
					Edit footprint	
					Edit model	
Replace		ОК		ancel	Info	Help

Рисунок 41 – Замена компонентов

терминалу.

свой вид в зависимости от того, на какой объект он наведен.

Различные виды курсора приведены на рисунке 42 и в таблице 6.

Когда курсор расположен над разъемом (pin) или терминалом (terminal) компонента, левым щелчком мыши можно его соединить. Когда курсор расположен над существующим проводом и рядом с разъемом или терминалом, соединение можно легко изменить.

Чтобы начать вести соединяющий провод, кликните по разъему; чтобы завершить соединение, кликните по конечному

Обозначение	Действие	
	Размещение или передвижение элемента, выбор	
×	пункта или иконки меню	
+	Добавление соединения	
×	Изменение соединения, перемещение проводников	

После появления проводника Multisim автоматически присвоит ему номер в сети. Номера увеличиваются последовательно, начиная с 1.

Заземляющие провода всегда имеют номер 0 – это требование связано с работой скрытого эмулятора SPICE. Чтобы изменить номер соединения или присвоить ему логическое имя, просто дважды кликнете по проводнику (рисунок 43).

Автосоединение разъемов касанием. В Multisim есть функция автоматического соединения разъемов между собой и с проводниками.

Net Settings	
Net name PCB settings Simulation se	ttings Advanced naming
Currently used net name	
Net name: 6	
Name source: Auto-named	
Preferred net name:	
Show net name (when net-specific	settings are enabled)
Net color:	
OK Cancel	Apply Help

Рисунок 42 - Свойства соединения

необходимо, чтобы его разъемы касались существующей сети (рисунок 43).

Добавление компонента в разрыв цепи. В Multisim есть возможность вставить компонент внутрь существующей сети соединений. Для этого просто разместите элемент параллельно проводнику (рисунок 44).

Мастера соединений для создания схем с заданными параметрами. В Multisim есть несколько мастеров соединений, которые помогают разработчикам быстро создавать схемы с заданными параметрами. Список мастеров соединений приведен на рисунке 45.

Они находятся в меню Инструменты/Мастера соединений (Tools/Circuit Wizards). Мастер таймеров (555 Timer Wizard) позволяет создавать нестабильные и моностабильные осцилляторы с помощью таймера 555.

Фильтры в Multisim создаются в Мастере фильтров (Filter Wizard) простым вводом параметров (рисунок 46).

Мастер усилителей с общим эмиттером на биполярном плоскостном транзисторе (Common Emitter BJT Amplifier Wizard) помогает создать усилитель с общим эмиттером с заданными параметрами.

MOSFET-усилители создаются с помощью соответствующего мастера (MOSFET Amplifier Wizard). В Multisim есть несколько схем с

операционным усилителем.

В полях Mactepa ОУ Multisim (Opamp Wizard) нужно ввести требуемые параметры:

- инвертирующий усилитель;
- неинвертирующий усилитель;
- дифференциальный усилитель;

- инвертированный суммирую-щий усилитель;
- неинвертированный суммиру-ющий усилитель;
- масштабируемый сумматор.

Проверка правил электротехники (Electrical Rules Check, ERC). В результате проверки правил электротехники (ERC) генерируется отчет с подробной информаций об ошибках (например, выходной разъем соединен с разъемом питания) и несоединенных разъемах. После соединения всех элементов проверьте схему на основании правил в диалоговом окне ERC.

В зависимости от схемы вам могут потребоваться Рисунок 45 – Мастера соединений предупреждения об определенных

типах соединений, ошибки в случае наличия других и ОК для всех остальных.

Тип соединений и сообщений устанавливается на закладке Правила ERC (ERC Rules) в диалоговом окне Electrical Rules Check.

Можно выполнить проверку всей схемы или определенного участка. Во время проверки все некорректности отображаются в панели результатов в нижней части экрана, а на схеме отображаются маркеры. При щелчке по ошибке экран центрируется на ней и увеличивается масштаб.

Рисунок 46 – Диалоговое окно мастера фильтров (Filter Wizard)

Закладки «Опции проверки» (ERC Options) и «Правила проверки» (ERC Rules) предназначены для настроек.

Для начала проверки:

1 Выберите пункт «Инструменты/Проверка правил электротехники» (Tools/Electrical Rules Check), откроется окно «Проверка» (Electrical Rules Check).

2 Настройте параметры отчета на закладке «Опции проверки» (ERC Options), (рисунок 47, *a*).

3 Установите параметры проверки на закладке «Правила проверки» (ERC Options) (рисунок 47, б).

4 Нажмите ОК. Формат отображения результатов устанавливается в разделе «Результаты» (Output) на закладке ERC Options.

Подсхемы и иерархические блоки. Multisim предназначен в том числе и для работы со схемами разной сложности. Для создания модульной структуры схемы и абстрагирования сложных схем служит концепция нескольких листов (multiisheet design), подсхемы (ПС, subbcircuits – SC) и иерархических блоков (ИБ, hierarchical blocks HB).

Рисунок 47 – Закладки «Опции проверки» (а) и «Правила проверки» (б)

Подсхемы полезны, чтобы сделать схему более компактной и в то же время хранить ее в одном файле.

Иерархические блоки лучше подходят для использования в нескольких схемах, потому что они хранятся в разных файлах. Иерархические блоки и

подсхемы функционально не отличаются друг от друга, единственное различие между ними – это способ хранения на диске.

Существует два способа сделать подсхему или иерархический блок. Первый: выделить часть схемы и выбрать пункт «Разместить/Разъемы/ИБ/ Разъем ПС» (Place/Connectors/HB/SC Connector). Второй метод описан ниже.

Новый иерархический блок (второй метод):

1 Выберите «Разместить/Новый иерархический блок» (Place/New Hierarchical Block) и укажите имя файла (рисунок 48).

2 Кнопка «Обзор» (Browse) позволяет выбрать путь и имя для сохранения файла иерархического блока.

3 Введите требуемое число входных и выходных разъемов и нажмите ОК. Появится «неявный» образ нового иерархического блока, выберите его местоположение и кликните мышью.

Hierarchical Block Properties

4 Дважды кликните на новом блоке и выберите «Редактировать ИБ/ ПC» (Edit HB/SC) в появившемся диалоговом окне «Иерархический блок/Подсхема» (Hierar-chical Block/Subcircuit).

5 Разместите и соедините компоненты нового иерархического блока.

6 Соелините ИБ с элементами схемы.

7 Сохраните схему. Примечание – Если вы переместите или переименуете файл иерархического блока относительно основной схемы, Multisim не сможет его найти. Вам нужно будет указать новое местоположение в появившемся диалоговом окне.

Чтобы добавить ИБ из файла, выберите пункт «Разместить/Иерархический блок из файла» (Place/Hierarchical Block from file) и повторите лействия.

Добавление новой подсхемы (второй метод):

1 Выберите пункт «Разместить/Новую подсхему» (Place/New Subcircuit). Откроется окно «Имя подсхемы» (Subcircuit Name) (рисунок 49).

2 Введите требуемое имя для схемы, например, «Источник питания» и нажмите ОК. Курсор примет вид «неявной» схемы показывая, что вы можете ее разместить.

3 Кликните на нужном месте для схемы (вы можете ee переместить позже если необходимо). На схеме появится

	J
OK Cancel Help	:

File name of hierarchical l	block:		Browse
Number of input pins: Number of output pins:	0		
		ОК	Cancel

x

Рисунок 48 – Диалоговое окно свойств иерархического блока

подсхема в виде окошка с указанным именем подсхемы.

4 Дважды кликните на новой подсхеме и выберите «Редактировать ИБ/ ПС» (Edit HB/SC) в появившемся диалоговом окне «Иерархический блок/ Подсхема» (Hierarchica lBlock/Subcircuit). Появится пустое окно подсхемы.

5 Разместите и соедините компоненты новой подсхемы.

6 Выберите пункт «Разместить/Разъемы/ИБ/Разъем ПС» (Place/ Connec tors/HB/SC Connector), поместите и соедините новый разъем. Разместите все необходимые разъемы. Когда вы вернетесь на основную схему, на иконке подсхемы будут все добавленные разъемы.

7 Соедините подсхему с другими компонентами.

Замена компонентов иерархическими блоками или подсхемами. В Multisim можно легко заменить существующие компоненты иерархическими блоками или подсхемами. Просто выберите нужный компонент, который по виду соответствует требуемой подсхеме, и замените его на иерархический блок. Для этого следует выбрать пункт «Разместить/Заменить иерархическим блоком» (Place/Replaceby Hierarchical Block) или «Разместить/Заменить подсхемой» (Place/Replaceby Subcircuit).

Представление в виде таблицы. Таблица позволяет получить общее представление о свойствах объектов. Это более продвинутое средство просмотра и редактирования параметров, включая детальную информацию о компонентах: схема, метка, параметры и ограничения конструкции (design constraints).

С помощью таблицы можно изменять сразу несколько компонентов. Элементы можно отсортировать по любому столбцу в убывающем или возрастающем порядке. Также возможно экспортирование содержимого в Microsoft Excel для отчета.

Отчеты по схеме. В Multisim можно сделать несколько различных отчетов: «Список материалов» (Bill of Materials BOM), «Подробный отчет о компонентах» (Component Detail Report), «Отчет о соединениях» (Netlist Report), «Статистика схемы» (Schematic Statistics), «Незадействованные элементы» (Spare Gates) и «Отчет перекрестных ссылок» (Cross Reference Report). В «Списке материалов» приведены все реальные компоненты схемы, т. е. это список тех элементов, которые нужны для производства схемы. В «Списке материалов» также содержится следующая информация:

- количество каждых элементов;

 – описание, включающее тип (например, резистор) и значение (например, 5,1 кОм);

- метка каждого компонента;

- упаковка или схема каждого компонента (package или foot-print).

В «Подробном отчете о компонентах» (Component Detail Report) представлена вся информация из базы данных Multisim для определенного компонента.

«Отчет о соединении» (Netlist Report) включает следующую информацию для каждого соединения:

- имя соединения;

страница (имя файла);

разъем (логическое имя разъема).

Отчет о перекрестных ссылках (Cross Reference Report) – это подробный перечень всех компонентов и их размещения на схеме.

Статистика схемы (Schematic Statistics Report) – это количественное описание схемы:

 компоненты – полное число компонентов, равное сумме виртуальных и реальных компонентов;

– реальные компоненты – количество компонентов, которые можно купить;

виртуальные компоненты – количество компонентов, которые нельзя купить;

- диоды - полное количество диодов на схеме;

- узлы – полное количество соединений между разъемами;

 соединенные, несоединенные разъемы – количество соединенных, несоединенных разъемов и их общее число;

страницы;

 иерархические блоки – полное количество иерархических блоков, включая копии;

- количество экземпляров блока равное количеству его копий на схеме;

 – уникальные иерархические блоки – полное количество уникальных иерархических блоков;

- подсхемы - полное количество подсхем, включая копии;

- уникальные подсхемы - полное количество подсхем;

 – отчет о незадействованных элементах – это список неиспользуемых диодов или многосекционных компонентов.

Примечание – В Multisim есть «Оптимизатор вентилей» (Gate Optimizer), который автоматически сводит многосекционные компоненты к минимальному числу микросхем. Чтобы его запустить, выберите пункт меню «Инструменты/Переимено-вать/Перенумеровать компоненты» (Tools/Rename/Renumber Components) и запустите «Оптимизатор вентилей».

Графические аннотации. В Multisim есть средства для графического

оформления вашей схемы. На панели графических аннотаций (Graphic Annotation) есть элементы: текст, линии, полилинии, прямоугольники, эллипсы, дуги, многоугольники, картинки и комментарии (рисунок 50).

1	<u>L</u> ine	Ctrl+Shift+L
\leq	<u>M</u> ultiline	
	<u>R</u> ectangle	
$^{\circ}$	<u>E</u> llipse	Ctrl+Shift+E
\geq	<u>A</u> rc	Ctrl+Shift+A
X	Polygon	Ctrl+Shift+G
2	Picture	

85

Рисунок 50 – Панель графических аннотаций Чтобы добавить графический элемент, не используя панель инструментов, в контекстном меню выберите пункт «Добавить графический объект» (Place Graphic).

Окно описания схемы. Вы можете добавить текст не только в определенное место схемы, но и создать описание для всей схемы с помощью вкладки «Окно описания схемы» (Circuit Description Box). В это окно вы также можете добавлять картинки, звуковые и видеоэлементы.

Содержимое «Окна описания схемы» отображается в верхней части соответствующего окна, оно открывается командой меню «Вид/Окно описания схемы» (View/Circuit Description Box). Чтобы редактировать окно описания схемы, запустите редактор командой меню «Инструменты/Редактор окна описания» (Tools/Description Box Editor).

Блоки заголовков. Мощный редактор позволяет вам создавать удобные блоки заголовков (title blocks). Если необходимо, блок заголовков можно добавить на любую страницу схемы.

Поля блока автоматически заполняются в зависимости от содержимого и свойств документа. При создании блока вы можете либо выбрать поле из шаблона, либо создать свое. Есть возможность выбрать подходящий шрифт. Чтобы создать новый или редактировать существующий блок заголовков, выберите пункт меню «Инструменты/Редактор блока заголовков».

В блоках заголовков может быть текст, линии, дуги, кривые Безье, прямоугольники, овалы, картинки и другие элементы.

Чтобы добавить блок, выберите пункт меню «Разместить/Блок заголовков» (Place/Title Block). Блок можно автоматически передвинуть в любой угол с помощью пункта контекстного меню «Передвинуть» (MoveTo). Чтобы заполнить поля блока, дважды кликните на нем.

Экспорт схемы в Ultiboard и другие пакеты. В Multisim есть команда быстрого экспортирования схемы в любую установленную версию Ultiboard. Выберите пункт меню «Экспортировать/Экспортировать в Ultiboard» (Transfer/Transfer to Ultiboard) чтобы запустить процесс конструирования печатной платы. Другие пункты меню Transfer позволяют провести прямую и обратную корректировки проекта.

Кроме передачи данных между Multisim и Ultiboard есть возможность экспортировать данные в другие пакеты проектирования печатных плат.

Примечание — При передаче данных в пакеты других производителей может потребоваться строгое соответствие используемых компонентов из баз данных.

4.4 Моделирование электрических схем устройств

Обзор функций моделирования. Для создания эффективных электрических схем в Multisim есть множество функций и средств эмуляции, недоступных в других пакетах проектирования электроники.

Эмуляция прибора позволяет снизить количество циклов разработки и ошибок при создании прототипа. Если схема проверяется эмулированием прямо во время ее разработки, количество циклов проектирования заметно снижается. Помимо эмулятора SPICE, в Multisim встроен эмулятор XSPICE, предназначенный для эффективного эмулирования цифровых компонентов.

Средства соэмуляции позволяют тестировать схемы с компонентами, описанными на VHDL. Пакет MultiMCU позволяет включать в комбинированные смешанные схемы определенные типы микроконтроллеров. Этот пакет доступен не во всех версиях Multisim.

Модели. Точные результаты эмуляции не бывают случайными. Используемая модель и настройки эмулятора определят скорость, точность и эффективность результатов. Для получения точных результатов необходимы качественные модели и соответствующие настройки эмулятора.

В Multisim входит средство создания моделей «Конструктор моделей» (ModelMakers), который автоматически формирует модель на основании данных из Databook. Таким образом экономится время и усилия.

Начальные настройки «Конструктора моделей» соответствуют определенной модели. Они не фиксированы и с помощью данных Databook можно выбрать компоненты и численные значения, соответствующие определенному компоненту.

Конструктор моделей запускается на фиксированном шаге создания нового компонента с помощью мастера компонентов. Также его можно запустить при редактировании компонента из базы данных: на закладке «Модель» (Model) окна «Свойства компонента» (Component Properties) нажмите кнопку «Добавить/редактировать» (Add/Edit) и запустите «Конструктор моделей» соответствующей кнопкой (Start Model Maker).

Модели SPICE можно найти на сайтах производителя микросхем, также

87

возможно создание собственных моделей.

Использование

интерактивного эмулятора. Перед началом эмуляции следует проверить все схемы на наличие источников питания и заземления. Когда все готово, нажмите кнопку запуска эмулятора или клавишу F5. Запустится интерактивная эмуляция.

Настройки интерактивной эмуляции можно изменять в меню

faults for transient analy	sis instruments	utput Analysis opt	ions	
Initial conditions				Reset to defau
Automatically determine	initial conditions		•	
Instrument analysis				
Start time (TSTART):	0	s		
End time (TSTOP):	1e+030	s		
Set maximum timeste	ep (TMAX)			
Maximum time st	ep (TMAX): 1e-	005 s		
Generate time st	teps automatically			
More options				
Set initial time step				
Initial time step (TSTEP): 1e-005 s				
Ectimate maximum to	me step based on r	net list (TMAX)		

Рисунок 51 – Настройки интерактивной эмуляции

«Эмуляция/Настройки интерактивной эмуляции» (Simulate/Interactive Simulation Settings). Некоторые из настроек приведены на рисунке 51.

По умолчанию установлено время окончания эмуляции через 30 с после окончания переходного процесса. Шаг по времени генерируется автоматически.

Результаты эмуляции также отображаются на виртуальных приборах. Они рассматриваются ниже в этом разделе.

В Multisim есть и более привычные средства анализа SPICE. Чтобы их запустить, нажмите кнопку на панели «Самописец/Аналитика» (Grapher/Analyses List) или выполните эту операцию с помощью пункта меню «Эмуляция/ Анализ (Simulate/Analyses).

Simulation Error Log/Audit Trail	×
▲ ⊡-Instrument operation performed (3 anpens 2013 r., 17:04:29)	New
Instrument Analysis:Transient Analysis	
Output from instrument analysis	Save
BJT: Bipolar Junction Transistor	Holo
- device qq1	Lieb
model 2n1132a_bj	
ic -0.00841	
ib 0.000246	G = 0
ie 0.00817	() i ui
vbe -1.07	 Simple
vbc 0.667	-
am -0.232	O None
gpi 2.32e-006	
amu 0.0074	
ax 0.268	
00 0.236	
cpi 1.16e-011	
chx 4.67e-012	
ccs 0	
 Capacitor: Eived capacitor 	
< III	F

Рисунок 52 – Диалоговое окно «Информация об ошибке эмуляции»

Обработка ошибок эмуляции. Рано или поздно может возникнуть ошибка во время эмуляции SPICE. Для поиска и исправления ошибок в Multisim служит «Советник эмуляции» (simulation advisor). Если появится сообщение об ошибке (рисунок 52), запустите «Советник» про-смотрите доступную И информацию (рисунок 53)

Чтобы посмотреть результаты, воспользуйтесь динамическим пробником. Для этого нажмите иконку пробника – и при наведении курсора мыши на любой сегмент

сети отобразятся следующие данные: напряжение (мгновенное, амплитуда, среднеквадратичное и постоянный сдвиг); частота.

ያ Multisim	-			_		_		×
2	*	¢	4	4	Ē -			
Скрыть	Найти	Назад	Вперед	Печать	<u>П</u> араметры			
<u>У</u> казатель	Поиск И	збранное	4 >	Simulat	or Setting	s and Options Solutions	ons	
Введите клю	чевое слов	о для поиска		In order to	a divist the se	ment acttings and aptions you	u mu at firat	=
neneral				determine	which of the f	two fundamental analysis mo	des DC or	
general				Transient,	is causing th	e convergence problem. The	error "iteration limit	
	B	ывести разде	лы	reached" a applies to	applies to DC transient con	convergence while the error " vergence failure.	time-step too small"	
<u>В</u> ыберите ра	здел, котор	зый нужно вы	вести:	There are	many simulat	tor options available (see <u>Sim</u>	ulator Options) but	
				only a sma	all subset is g	enerally useful in resolving no	on-convergence.	
ReportBOM			^	quideline	ions, along w below	ith specific settings, are discu	issed in the	
ReportNetL	st			guiacinic				
Rotating/Fil	VIEW leater	d Components		1. Inc	rease iteratio	n limits.		
Salact Displ	view insuu av Data for i	nienis Cureore dialog	ь III	Inc	reasing the it	eration limits forces the simul	ator to take more	
Sensitivity A	nalvsis Para	meters		iter	rations before	declaring non-convergence.	There are three	
Setting Drad	ging Select	ion Options		opt	tions for this: I	ITL1, ITL2, and ITL4. ITL1 is u	sed in DC analysis.	
Setting Four	ier Analysis	Parameters	_	ITL	2 is much mo	ore specialized. ITL2 is the iter	ration limit used by	
المستعب		· ·		DC	Sweep Analy	sis for its intermediate DC an	alyses. Increasing	
		Выве	сти	the	se values to s	500 or 1000 often helps. ITL4	is the iteration limit	
					eu in each Tra	ansieni Anaiysis time point. Ni calculation is not skinned. Tra	ute triat il trie Insient Analysis can	-
				J 06	or damy points	carcananon io nor siappea, ma	anorone, analysis can	

Рисунок 53 – Советник эмуляции

Чаще всего встречается две ошибки: задания времени (time steperror) и сингулярная матрица (singul armatrix). В таблице 7 приведены возможные пути исправления этих ошибок.

Таблица 7 – Исправления ошибок эмул	яции
-------------------------------------	------

Действие	Настройка	По умолчанию	Новое значение		
Ошибка: В	ременной шаг	слишком маленьки	й		
Измените начальные	Начальные	Автоматическое	Установите ноль		
условия	условия	определение			
Увеличьте максимальный	TMAX	$1 \cdot 10^{-5}$	$1 \cdot 10^{-3}$		
шаг по времени					
Действие	Настройка	По умолчанию	Новое значение		
Увеличьте относительный	RELTOL	$1 \cdot 10^{-3}$	$1 \cdot 10^{-2}$		
допуск ошибки (relative er-					
rortolerance)					
Уменьшите сопротивление	RSHUNT	$1 \cdot 10^{12}$	$1 \cdot 10^{9}$		
шунта					
Измените метод интеграции	METHOD	Трапециидальн	Зубчатый		
(при высокой мощности или		ый (Trapezoidal)	(Grear)		
в схемах с					
переключателями)					
Ошибка: сингулярная матрица					
Проверьте соединения	—	—	—		
Уменьшите порог	PIVTOL	1.10-13	Уменьшить до ве-		
диагонального элемента			личины, меньшей		

			указанной в сооб- щении об ошибке
Увеличьте допустимый	PIVREL	$1 \cdot 10^{-13}$	$1 \cdot 10^{-11}$
уровень заполнения			

4.5 Виртуальные измерительные приборы

Виртуальные приборы – это модельные компоненты Multisim, которые соответствуют реальным приборам. Например, среди виртуальных приборов в Multisim есть осциллографы, генераторы сигналов, сетевые анализаторы и плоттеры Боде.

Виртуальные приборы – это простой и понятный метод взаимодействия со схемой, почти не отличающийся от традиционного при тестировании или создании прототипа.

Разработчики, знакомые с National Instruments LabVIEW, могут создавать свои собственные приборы. Например, для моделирования электромагнитных помех можно собрать собственный генератор шума.

Виртуальные приборы LabVIEW могут регистрировать реальные данные, пользоваться ими во время эмуляции, отправлять данные на вывод аналоговых приборов. Таким образом, эмулированные данные могут управлять реальными приборами. Для создания виртуальных приборов среда разработки LabVIEW необходима, а для использования уже созданных – нет.

Чтобы добавить виртуальный прибор, выберите его на панели «Приборы» (Instruments) (рисунок 54).

Чтобы посмотреть лицевую панель прибора, дважды кликните на иконку прибора. Разъемы прибора соединяются с элементами схемы так же, как и для других компонентов.

В Multisim также есть эмулированные реально существующие приборы (к ним относится Tektronix TDS 2024Oscilloscope). Они выглядят И действуют точно в соответствии с техническим описанием производителя.

В каждой схеме может быть много приборов, включая и копии одного прибора. Кроме того, у каждого окна схемы может быть свой набор приборов. Каждая копия прибора настраивается и соединяется отдельно.

В этом разделе рассмотрены наиболее популярные приборы. Более подробная информация о каждом приборе есть в руководстве пользователя Multisim (UserGuide) и в файле справки (help file).

Мультиметр предназначен для измерения переменного или постоянного тока, или напряжения, сопротивления или затухания между двумя узлами схемы. Диапазон измерений мультиметра подбирается автоматически. Его внутреннее сопротивление и ток близки к идеальным значениям, но их можно изменить (рисунок 55).

Генератор сигналов (function generator) – это источник напряжения, который может генерировать синусоидальные, пилообразные и прямоугольные импульсы. Можно изменить форму сигнала, его частоту, амплитуду, коэффициент заполнения и постоянный сдвиг (рисунок 56).

Диапазон генератора достаточен, чтобы воспроизвести сигналы с частотами от нескольких герц до аудио- и радиочастотных.

Осциллографы. В Multisim есть несколько модификаций осциллографов, которыми можно управлять, как настоящими. Они позволяют устанавливать параметры времени развертки и делителя для входного напряжения, выбирать тип и уровень запуска измерений. Результаты измерений осциллографов Multisim можно посмотреть после

эмуляции с помощью самописца (Grapher) из меню Вид/Плоттер (View/Grapher) или дисплея (рисунок 57).

Рисунок 57 – Символ осциллографа (*a*) и его лицевая панель (б) В Multisim есть следующие осциллографы: 2-канальный; 4-канальный; осциллограф смешанных сигналов Agilent 54622D; 4-канальный цифровой осциллограф с записью Tektronix TDS 2024 (рисунок 58).

Рисунок 58 – Символ осциллографа Tektronix (a) и его лицевая панель (б)

Плоттер Боде. Он отображает относительные фазо- или амплитудночастотные характеристики входного и выходного сигналов. Это особенно удобно при анализе свойств полосовых фильтров (рисунок 59).

Рисунок 59 – Символ плоттера Боде (a) и его лицевая панель (δ)

Спектральный анализатор (spectrum analyzer) служит для измерения амплитуды гармоники с заданной частотой. Также он может измерить мощность сигнала и частотных компонент, определить наличие гармоник в сигнале (рисунок 60).

Результаты работы спектрального анализатора отображаются в спектральной области, а не во временной. Обычно сигнал – это функция времени, и для ее измерения используется осциллограф. Иногда ожидается синусоидальный сигнал, но он может содержать дополнительные гармоники. В результате, невозможно измерить уровень сигнала. Если же сигнал измеряется спектральным анализатором, получается частотный состав сигнала, т.е. амплитуда основной и дополнительных гармоник.

Рисунок 60 – Символ спектрального анализатора (а) и его лицевая панель (б)

Приборы NI LabVIEW. В состав Multisim входит четыре разных виртуальных прибора NI LabVIEW: микрофон (microphone), динамик (speaker), генератор сигналов (signal generator) и анализатор сигналов (signal analyzer) (рисунок 61).

Микрофон (Microphone) записывает звук устройствами аудио-записи компьютера и выдает эти данные как источник сигнала.

Динамик (Speaker) воспроизводит входящие звуковые данные на динамике компьютера.

Генератор сигналов (Signal Generator) генерирует синусоидальный, треугольный, прямоугольный и пилообразный сигналы.

Рисунок 61 – Символ динамика (а) и его лицевая панель (б)

Анализатор сигналов (SignalAnalyzer) отображает временной профиль, энергетический спектр или текущее среднее значение входящего сигнала.

Необходимые приборы можно создать в графической среде разработки NI LabVIEW. Этим приборам доступны все возможности LabVIEW: сбор данных, управление приборами, математический анализ и многие другие. Например, вы можете зарегистрировать реальный сигнал с помощью платы сбора данных или модульного прибора NI и воспользоваться полученными данными в эмуляции схемы Multisim.

Также можно сделать прибор, который отображает данные эмуляции и одновременно результаты вычислений (текущего среднего значения, спектра мощности) на основании этих данных.

Приборы NI LabVIEW могут использоваться как устройства ввода, так и вывода данных. Приборы ввода отображают или обрабатывают данные. Приборы вывода генерируют данные, которые станут источником в эмуляции. Один прибор NI LabVIEW не может быть одновременно прибором и ввода, и вывода данных.

Еще одно различие между приборами ввода и вывода данных: первые постоянно получают данные во время работы эмуляции. В отличие от них приборы вывода данных генерируют конечный набор данных и передают его в Multisim. Эти данные используются в эмуляции схемы. Приборы вывода данных не могут постоянно генерировать данные во время работы эмуляции. Для ввода в схему новых данных остановите эмуляцию, измените данные и перезапустите эмуляцию. Приборы вывода данных предоставляют создателю или пользователю возможность повторения выходных данных. В настройках прибора Lab VIEW необходимо указать период повторения данных, в противном случае эмулятор будет считать, что поступает 0 (ноль) В после окончания данных. Если прибор настроен на повтор данных, сигнал будет повторяться до окончания эмуляции.

Приборы ввода данных позволяют пользователю или создателю установить частоту оцифровки. Это частота регистрации данных Multisim, аналогично частоте оцифровке прибора сбора данных или модульного прибора, регистрирующего реальный сигнал. При выборе частоты оцифровки необходимо учитывать теорему Найквиста. Обратите внимание, что чем больше частота оцифровки, тем медленнее будет работать эмуляция.

Для создания и изменения приборов NI LabVIEW необходима среда разработки NI LabVIEW версии 8.0 или выше.

Для использования приборов NI LabVIEW на компьютере должен быть установлен NI LabVIEW Runn Time Engine. Его версия должна совпадать с версией LabVIEW, в которой был создан прибор. NI LabVIEW Runn Time Engine 8.0 как элемент Electronics Workbench Shared Components входит в комплект установки Multisim.

Анализ результатов измерений. В Multisim входит множество средств анализа данных эмуляции, от простых до самых сложных, в том числе и вложенных. Чтобы начать анализ, выберите пункт меню Эмуляция/Анализ

Simulate/Analyses) и нужную функцию. Список всех функций Multisim приведен на рисунке 62.

Кроме встроенных функций анализа, есть возможность определить свою функцию с помощью команд SPICE.

При подготовке к анализу настройте его параметры, на-

пример, диапазон частот для анализатора переменного тока (AC analysis) (рисунок 63). Также здесь необходимо выбрать выходные каналы (traces). Чтобы не запутаться при просмотре результатов, имена каналов лучше делать осмысленными.

Результаты отображаются на графиках Multisim Grapher и сохраняются для последующей обработки программой Postprocessor. Некоторые результаты сохраняются в контрольной записи (audit trail), которую тоже

AC Analysis	11 1 0 % <u>=</u>	<u> , = ^ = +</u> =	<u>dia 640 </u>			x
Frequency parameters	Output Analy	sis options	Summary			
Start frequency (FSTA Stop frequency (FSTC Sweep type: Number of points per Vertical scale:	RT): 1 P): 10 Dec decade: 10 Log	ade •	Hz GHz	•	Reset to default	
	Simulate		ж	Cano	iel Help	

Рисунок 63– Диалоговое окно настроек AC Analysis

можно просмотреть.

Плоттер (Grapher). Это инструмент основной просмотра результатов эмуляции. Он открывается из меню Вид/Плоттер (View/ Grapher) и автоматически включается при работе эмуляции. Различные части окна плоттера обозначены на рисунке 64.

Данные отображаются на графике graph и в таблице chart. График – это одна или несколько зависимостей вдоль вертикальной или горизонтальной оси.

В таблице представлены строки и колонки текстовых данных. Окно разделено на несколько закладок, число которых зависит от работающих функций анализа.

Если не выделен ни один график, в полоске состояния отображается выбранная закладка

Рисунок 64 – Плоттер

Tab name			ОК
Tab name:	Osciloscope-XSC1		Cancel
Title			Apply
litte			
Title	Design1	Font	
Page prope	rties		
	Background color:	White -	
	Show/hide diagra	ms on page	

Рисунок 65 – Настройки страницы плоттера

Title	Font
Grid	Traces
Pen style: Dot	Selected trace: 2
Pen size: 1 🚔 🔲 Silver	Legend on
Grid on	Show select marks
Cursors	
Single trace	Selected cursor 1
All traces	Select display data

Рисунок 66 – Свойства графика

Курсоры можно перетаскивать с помощью левой кнопки мыши. Настройки передвижения курсора задаются в его контекстном меню.

Можно переместить курсор на заданное значение по оси X, Y, или к следующему минимуму или максимуму в любом направлении (рисунок 67).

Курсоры и линии графика можно скрыть или отобразить с помощью кнопок панели (рисунок 68).

Результаты можно экспортировать в NI LabVIEW, Excel или MathCAD. Также их можно сохранить в одном из

У каждой закладки есть две возможные активные зоны. указанные красной стрелкой на левом поле: всей закладки, около ее имени или активного графика (таблицы). Некоторые функции, например копирования, вставки, вырезания, влияют только на активную область. поэтому проверьте, что выделена нужная область перед выполнением такого действия.

Множество настроек плоттера находятся в окне свойств. Можно масштабы. изменять лиапазоны. заголовки. стили линий осей И многие другие параметры. Чтобы открыть окно настроек страницы (Page Proper-ties) или окна стандартных свойств, воспользуйтесь пунктами меню

Редактировать /Настройки страницы (Edit/Page Properties) (рисунок 65) или Редактировать /Свойства (Edit/Properties) (рисунок 66).

ŇŤ	Show Cursors				
	Select Cursor				
	Set X Value				
	Set Y Value =>				
	Set Y Value <=				
	Go to next Y MAX =>				
	Go to next Y MAX <=				
	Go to next Y MIN =>				
	Go to next Y MIN <=				
(5.9)	Add Data Label at Cursor				

Рисунок 67 – Возможные перемещения курсора следующих форматов: данные LabVIEW (.LVM или .TDM), с разделением запятыми (.CSV) и в виде текста.

Чтобы сохранить данные плоттера, в меню Файл/Сохранить как (File/Save As) выберите необходимый формат.

Рисунок 68 – Панель плоттера

Создание и редактирование компонентов. В Multisim есть средства создания и редактирования компонентов, необходимых для схемы. Есть два метода: 1 – с помощью Мастера компонентов (Component Wizard) и 2 – диалогового окна Свойства компонента (Component Properties). Мастер компонентов открывается из меню «Инструменты/Мастер компонентов» (Tools/ Componen Wizard). В нем можно полностью описать компонент: указать его символ, модель SPICE (рисунок 69).

Чтобы открыть диалоговое окно свойств компонента, дважды кликните на размещенном компоненте, откройте закладку Значение (Value) (рисунок 70). Более подробно создание компонентов описано в справочных файлах.

Component Wizard - Step 1 of 8	×
Enter component information	
Component name:	Eunction:
Author name:	*
александр и валентина	▼
Simulation and layout (model and footp	rint)
Simulation only (model)	
Layout only (footprint)	
Component type:	
Analog 🗸	
	<u>v</u> ext > <u>Cancel Help</u>

Рисунок 69 – Мастер компонентов

Resistance (R):	14k	-Ω		
Tolerance:	0	▼ %		
Component type:				
Hyperlink:				
Additional SPICE simulat	ion paramete	ers		
Temperature (TEMP).	27	°C	
Temperature coeffic	Temperature coefficient (TC1):		1/°	C
Temperature coefficient (TC2):		0	1/°	C2
Nominal temperature (TNOM):		27	∘⊂	
Layout settings				
Footprint:			Edit footprint	
Manufacturer:				

Рисунок 70 – Диалоговое окно свойств компонента

4.6 Интеграция электрических схем Multisim с приборами National Instruments LabVIEW

National Instruments LabVIEW графического это среда программирования, которую можно использовать для автоматизации задач тестирования И измерений при проверке схем. Данные Multisim, сохраненные в форматах .LVM или .TDM, можно просто загрузить в LabVIEW с помощью технологии «Экспресс ВП». После этого данные эмуляции можно наложить на полученные результаты для проверки схемы.

Загрузка файлов данных .LVM и .TDM. Чтобы загрузить данные Multisim из файлов .LVM или .TDM, воспользуйтесь подпрограммой «Экспресс ВП» для непосредственного чтения файла измерений (Read from Measurement File). Эта подпрограмма находится на вкладке «Программирование/Запись и чтение файлов» (Programming/File IO). Подробная информация об этой подпрограмме находится в системе помощи LabVIEW. Ее можно настроить на чтение либо .LVM, либо .TDM файлов (рисунок 71).

Рисунок 71 – Экспресс ВП – прочитать файл измерений

Примечание – Для файлов с расширением .LVM: на «выходе EOF?» (конец файла) будет «ИСТИНА», если при чтении достигнут конец файла. Этот индикатор полезен, если данные сохранялись после анализа графика Боде или другого графика с более чем одной зависимостью. Просто поместите «Экспресс ВП» – для чтения файла измерений в цикл и соедините «выход EOF?» с терминалом выхода из цикла.

Для файлов с расширением .TDM: чтобы загрузить в LabVIEW .TDM файл, содержащий несколько графиков, необходима технология «Экспресс ВП» низкого уровня.

Виртуальные приборы LabVIEW в Multisim. Более подробно использование виртуальных приборов LabVIEW в Multisim изложено в работе [4].

Signal Express. Это инновационное средство настройки измерений на основе нескольких шагов работы с мышью, которые не требуют разработки программного кода. В отличие от традиционных инструментов, в Signal Express сочетается оптимальный баланс функциональности измерений и простота использования, позволяющая разработчикам стандартизировать создание различных приложений:

- моделирование схем;
- проверка схем;
- анализ схем;
- проверка приборов;
- автоматический поиск неполадок.

Экспорт данных Multisim в Signal Express. Чтобы передать данные эмуляции в Signal Express, добавьте соответствующий шаг: Добавить шаг/Аналоговый/Загрузить и сохранить сигнал/Загрузить из LVM (Add Step/ Analog/Load and save Sinals/Load from LVM). Укажите имя файла для загрузки и выберите зависимости, которые нужно импортировать. В поле Область (Domain) укажите временную или спектральную область записанных данных. Закройте окно и запустите рабочий файл Signal Express, чтобы загрузить данные.

ELVIS. National Instruments ELVIS – это полезный прибор для программы схемотехнического моделирования, в которой есть Multisim. В ELVIS есть среда разработки макетных плат со встроенными приборами, включая генератор сигналов, цифровой мультиметр, осциллограф и источник питания переменной мощности. Макетная плата съемная, это позволяет выполнять часть лабораторной работы отдельно от модуля ELVIS.

В ELVIS есть программное обеспечение на базе LabVIEW для взаимодействия с виртуальными приборами. В эти приборы можно добавить возможность загрузки данных Multisim для сравнения результатов эмуляции и измерений.

4.7 Создание прототипов виртуальных трехмерных компонентов

Целый набор компонентов Multisim предназначен для визуального ознакомления с реальными электротехническими компонентами. На схеме эти компоненты выглядят совсем как настоящие (рисунок 72). Они расположены в «Основной группе» (Basic group) «Главной базы данных» (Master Data-base) в семействе 3D VIRTUAL.

Анимированные компоненты. Они изменяются во время работы схемы. К ним относятся светодиоды, 7-сегментные дисплеи и некоторые другие компоненты, например переключатели и потенциометры. Анимированные компоненты находятся в разных разделах базы данных Multisim.

Параметрические компоненты. Эти компоненты имитируют свойства настоящих изделий. Уровень параметров можно задавать в свойствах компонента. Если мощность, рассеиваемая виртуальным резистором, превысит установленный порог, то он перегорит и разомкнет цепь. Параметрические компоненты расположены в «Основной группе» (Basic group) «Главной базы данных» (Master Data base) в семействе RATED_VIRTUAL.

Трехмерные макетные платы. Это еще одно средство Multisim, на котором возможно обучение важным этапам создания прототипов.

Рисунок 72- Виртуальные трехмерные компоненты

Если элементы на плате соединены правильно, то соответствующие соединения и компоненты на схеме окрасятся в зеленый цвет. Также в плату входят следующие средства: Проверка соблюдения проектных норм (Design Rules Check, DRC) и проверка соединений (Connectivity Check) (рисунок 73).

Рисунок 73 – Трехмерная виртуальная плата

Трехмерный виртуальный ELVIS. Кроме стандартной макетной платы возможно создание схемы NI ELVIS с соответствующим 3-мерным изображением (рисунок 74).

Поиск неисправностей, сбой схемы. Возможно внесение в схемы неисправностей и проведение занятий по обнаружению этих неполадок.

Рисунок 74 – Виртуальный 3D ELVIS

Capacitor	×
Label Display Value Fault	Pins Variant User fields
	None Open Short Leakage 100 Ohm
Replace	OK Cancel Info Help

Рисунок 75 – Добавка неполадок

Внесенные неисправности можно скрыть визуального OT обнаружения, чтобы поиск выполнялся стандартными средствами отладки. Чтобы добавить неполадку, дважды кликните на откройте закладку компонент И Неполадки (Faults) (рисунок 75).

В качестве неполадки можно задать отсутствие контакта на терминале, короткое замыкание двух терминалов или резистивные потери в Омах.

В качестве скрытой схемы можно

задавать типовые или нестандартные подсхемы для отработки навыков анализа неизвестных элементов. Создание подсхем приведено в подразделе 4.1.

Примечание – Не стоит использовать в качестве скрытых схем «Иерархические блоки», потому что они хранятся в отдельном файле, которые доступны для просмотра.

Скрытые схемы. Ограничения на схему. Ограничения схем – очень важный элемент создания задач на скрытые схемы или поиск неполадок. Они позволяют видеть подсхемы, скрывать неполадки и ограничивать число доступных компонентов и приборов. Например, можно рекомендовать воспользоваться осциллографом для исследования амплитудной передаточной характеристики схемы, ведь плоттера Боде или анализатора переменного тока может не оказаться. Ограничения общие и на схему открываются в меню «Опции» (Options) (рисунок 76). Доступ к ним защищен паролем.

4.8 Программы Postprocessor и Grapher для построения графиков

Программы Postprocessor и Grapher – это программы пакета Multisim, которые позволяют отобразить результаты моделирования в графическом виде. Данная функция позволяет строить необходимые графики после проведенного анализа.

Для работы с функцией Postprocessor необходимо знать названия узлов. Только те параметры (входные и выходные переменные), которые указываются при выполнении любого вида анализа (AC Sweep, DC Sweep, Transient

Analysis и т.д.) отображаются на графиках функции Postprocessor и Grapher. С помощью данной функции можно создать несколько графиков, Рисунок 76 – Диалоговое окно ограничений схемы удалять объекты, производить логические и алгебраические операции над

графиками (сложение, умножение, возведение в квадрат и т.д.). Вызов функции Postprocessor производится из окна «Design1» (рисунок 77).

Рисунок 77 – Окно вызова функции для создания графика

Создание графика. Внесение данных, необходимых для построения:

– Select simulation results – добавление данных проведенного анализа (рисунок 78).

– Variables – переменные, необходимые для построения графика (рисунок 79).

– Functions – алгебраические действия над графиками.

В окне Expressions available выбираем необходимые графики для построения.

Select si	mulation results:	Variables:	Functions:		
····· No simulation results	simulation results	All	▼ All	All	
			- % * ',	Ē	
Set de	fault Delete Re	fresh Conv variable to (/ + abs() and atan() avg()		
Expressi Order	ons:			Add	
				Delete	

Рисунок 78 – Окно добавления данных

Общие правила моделирования. При моделировании схем необходимо соблюдать следующие общие правила:

1 Любая схема должна обязательно содержать хотя бы один символ заземления.

2 Любые два конца проводника либо контакта устройства, встречающихся в точке, всегда считаются соединенными. При соединении трех концов (Т-соединение) необходимо использовать символ соединения (узел). Те же правила применяются при соединении четырех и более контактов.

3 В схемах должны присутствовать источники сигнала (тока или напряжения), обеспечивающие входной сигнал, и не менее одной контрольной точки (за исключением анализа схем постоянного тока).

Топология схем:

1 В схеме не должны присутствовать контуры из катушек индуктивности и источников напряжения.

2 Источники тока не должны соединяться последовательно.

3 Не должно присутствовать короткозамкнутых катушек.

Expression Gr	aph				
Pages:	Order	Name		Display	Add
Diagrams:	Order	Name		Туре	Add Delete
Expressions a	available:		E	xpressions selected:	
			>		

Рисунок 79 – Окно добавления графиков

4 Источник напряжения должен соединяться с катушкой индуктивности и трансформатором через последовательно включенный резистор. К конденсатору, подключенному к источнику тока, обязательно должен быть параллельно присоединен резистор.

Пример моделирования схемы. Для примера рассмотрим усилительный каскад на биполярном транзисторе, включенным в схему с общим эмиттером (рисунок 80).

Рисунок 80 – Моделирование усилительного каскада на транзисторе

Построим графики зависимости выходного и входного напряжений от времени, передаточную характеристику, амплитудночастотную и фазо-частотную характеристики.

1 Соберем исследуемую схему в среде Multisim.

Примечание – Двойное нажатие левой кнопкой мыши на элемент позволяет изменить его параметры. Для удобства при работе можно изменять цвет проводов (выделяем провод правой кнопкой мыши появившемся И в контекстном меню выбираем Change Color).

2 Запускаем схему, осциллограф

автоматически строит графики зависимости входного и выходного напряжений от времени (для просмотра достаточно нажать левой кнопкой мыши на осциллографе) (рисунок 81).

3 В активном окне Oscillo-scope-XSC1 можно увеличивать и уменьшать масштаб, сдвигать графики по осям ординат и абсцисс, с помощью курсора

смотреть параметры в каждой точке графика (здесь – значение напряжения), с помощью кнопки Save можно сохранить данные осциллографа в виде таблицы в текстовом файле.

4.9 Упражнения для изучения программы схемотехнического моделирования Multisim

Упражнение 1. Ознакомление с интерфейсом Multisim.

Это упражнение знакомит с общими свойствами интерфейса Multisim Цель упражнения – ознакомиться с интерфейсом Multisim.

Выполнение.

1 Запустите Multisim:

a) выберите пункт меню «Файл/Открыть пример» (SelectFile/ Open Samples) и откройте AMPMOD.ms9;

б) поэкспериментируйте с различными внешними видами среды Multisim;

– выберите «Вид/Таблица» (View/Spread sheet), чтобы включить представление таблицы;

– изучите закладки Сети (Browse), «Компоненты» и «Слои печатной платы» (Nets, Components и PCB Layers);

- укажите количество сетей с уникальным номером;

в) выберите пункт «Вид/Описание схемы» (View/Circuit Description Box). Здесь моно узнать подробные сведения о разрабатываемой схеме. Для редактирования содержимого выберите пункт «Инструменты/Редактор описания» (Tools/Description Box Editor);

г) выберите «Вид/Панель разработчика» (View/Design Toolbox). Здесь приведен список файлов, вспомогательных схем и других элементов схемы.

2 Изучите пункты «Глобальные настройки» и «Свойства листа» (Global Preferences и Sheet Properties):

a) выберите пункт «Опции/Свойства листа» (Options/Sheet Properties):

– попробуйте отобразить и скрыть сетку на закладке «Рабочая область» (Workspace), чтобы увидеть изменения, нажмите ОК или «Применить» (Apply);

– попробуйте изменить цвета с помощью закладки «Схема» (Circuit) чтобы увидеть изменения, нажмите ОК или «Применить» (Apply);

б) выберите «Опции/Глобальные настройки» (Options/Global Preferences);

в) отметьте «Автоматическое создание резервной копии» (Autobackup) на закладке Сохранение (Save):

– включите или отключите «Возврат к проводнику компонентов» (Return to Component Browser) на закладке Компоненты (Parts).
3 Изучите настройки на вкладке «Общие» (General). Определите режим для прямоугольника выбора (Selection Rectangle).

4 Потренируйтесь в среде Multisim. Попробуйте разместить произвольный элемент на схеме.

5 Закройте схему с помощью пункта «Файл/Закрыть» (File/Close).

Упражнение 2. Поиск и размещение компонентов.

Это упражнение знакомит с проводником компонентов. Выполнив это упражнение, вы должны уметь открывать проводник, искать и находить нужные компоненты, а также получать дополнительную информацию с помощью различных полей проводника.

Цели упражнения:

 узнать, как с помощью проводника компонентов искать необходимые элементы;

– познакомиться с информацией, которая отображается в проводнике компонентов.

Выполнение.

1 Откройте окно новой схемы «Файл/Новый/Ввод схемы» (File /New/ Schematic Capture).

2 Вызовите проводник компонентов (рисунок 82) с помощью кнопки «Источники» (Sources) на «Панели элементов» (Parts Bin) или «Панели компонентов» (Components Toolbar).

Рисунок 82 – Панель элементов (Parts Bin)

3 Найдите и поместите на схему элемент «Заземление» (Ground), он находится в семействе источников питания POWER_SOURCES.

4 С помощью функции «Поиск» (Search) найдите микросхему Analog Devices OP297AZ:

а) в проводнике компонентов нажмите кнопку «Поиск» (Search);

б) наберите «OP297AZ» в поле «Компонент» (Component), когда вы найдёте компонент, нажмите OK. Пока не помещайте его на блок-диаграмму;

в) сколько различных операционных усилителей в вашей базе данных?

(Указание: Воспользуйтесь символом «*» в поисковом запросе: «OP297*»)

г) сколько секций у микросхемы?

(Указание: Секции обозначаются буквами ААZ)

д) при размещении операционного усилителя на блок-диаграмме нужно выбрать

Рисунок 83 – Панель для выбора секции микросхемы секцию А или В (рисунок 83). Пока не помещайте ОУ на схему;

е) с помощью функции «Поиск» найдите 166-тиричный инвертор 74S04D.

5 Перед тем как поместить элемент на схему, вам предложат на выбор один из шести инверторов. Выберите вариант А. После этого вы можете добавлять либо такие же логические элементы (U1), либо другие микросхемы.

6 Добавьте еще один элемент вида А. Какая метка (reference designator) для него назначается по умолчанию?

Упражнение 3. Рисование схем.

Это упражнение – базовое по вводу схемы в Multisim. Вы создадите и соедините простую схему в Multisim, воспользовавшись различными методами поиска компонентов, их соединения и запуска простейшего моделирования.

Цели упражнения:

- ознакомиться с настройками соединения;

 понять различие между реальными, виртуальными, идеальными и интерактивными элементами;

- создать простейшую схему (включая виртуальные соединения).

Выполнение.

1 Создайте свою копию схемы 40kFILTER1_Complete.ms9, как показано на рисунке 84. Выберите необходимые компоненты из «Основной базы данных» (Master Database) и «Разместить/Компонент Place/Component» из «Популярного списка» (InnUseList). Установите значения компонентов, как показано на рисунке.

Примечание – Компоненты R1, R2 и C2 виртуальные.

Рисунок 84 – Полосовой фильтр

2 Чтобы соединить компоненты, наведите курсор на терминал так, чтобы он изменил свой вид и кликните мышью. Переместите курсор (таща за собой провод) до второго терминала и кликните, чтобы завершить соединение.

3 Замените резистор *R*2 средствами Multisim: для чего выберите в контекстном меню пункт «Заменить компоненты» и замените виртуальные резистор реальным (раздел Basic/Resistor) на ваш выбор.

4 Дважды кликните на виртуальные компоненты и посмотрите, как задаются их параметры.

5 Поверните и переместите какой-либо компонент, чтобы посмотреть, как ваши действия влияют на соединяющие проводники. Также компоненты можно поворачивать, когда вы размещаете их из базы данных.

6 Выберите виртуальный конденсатор из Популярного списка и разместите его между точками *A* и *B* схемы. он автоматически соединится с элементами схемы, а его емкость станет равной 270 пкФ.

Упражнение 4. Использование приборов

В этом упражнении демонстрируется интерактивный эмулятор и виртуальные приборы. К концу упражнения пользователь научится размещать приборы, открывать их лицевые панели и настраивать различные параметры.

Цели упражнения – научиться размещать, соединять и настраивать виртуальные приборы

Выполнение.

1 Загрузите схему 40kFilter2.ms9. Во время выполнения шагов обратитесь к рисунку 84.

2 Замените Тактовый генератор (Clock Source) Генератором сигналов (Function Generator). После размещения дважды кликните его иконку, чтобы открыть переднюю панель и введите следующие параметры:

- волновой фронт (Wave form) = синусоидальный (sine wave);

-амплитуда (Amplitude) = 1 В;

- частота (Frequency) = 40 кГц.

3 Закройте панель приборов.

4 Поместите плоттер Боде (Bodeplotter) между входным и выходным узлами. Двойным щелчком откройте прибор и введите настройки, указанные ниже. После этого запустите эмуляцию и исследуйте результаты:

- установите величину (Magnitude);

 горизонтальную I (Initial – начальная) = 1 кГц, F (Final – конечная) = = 1 МГц;

– вертикальную I (Initial – начальная) = 50 дБ, F (Final – конечная) = 10 дБ.

5 Поместите осциллограф чтобы измерить входное и выходное напряжения. Дважды кликните иконку осциллографа и введите следующие параметры:

- цена деления по времени (Time base) = 20 мкс/дел;
- канал A= 1 В/дел;
- канал В = 1 В/дел.

6 Цвет проводника, подключенного к прибору определяет цвет на экране прибора. Убедитесь, что проводники от выходного разъема до операционного усилителя голубые. В противном случае, в контекстном меню участка проводника выберите команду «Цвет проводника» (Wire Color) и измените цвет.

7 Измените значение потенциометра R3, нажав «А», чтобы увеличить сопротивление и «Shiftt A», чтобы его уменьшить. Изучите изменение данных на экране осциллографа.

Рисунок 85 – Прибор «Пробник» на панели приборов

Примечание – Данные Графика Боде изменятся только после перезапуска эмуляции.

8 Во время работы эмуляции воспользуйтесь прибором «Пробник» (Measurement Probe), чтобы проверить уровни на-

пряжения в схеме. Он находится в конце панели приборов vнок 85).

(рисунок 85).

Упражнение 5. Работа с функциями анализа.

В этом упражнении полосовой фильтр изучается с помощью функций анализа. Так, на основе функций анализа переменного тока, переходных процессов, Фурье и Монте-Карло приобретается навык работы с настройками функций и плоттера.

Цели упражнения:

– сравнить результаты анализа переменного тока (AC Analysis) с характеристиками, полученными на плоттере Боде;

– сравнить анализ переходных процессов (Transient Analysis) с характеристиками, полученными на осциллографе;

- освоить методику анализа Фурье;

– овладеть методикой установки допусков (tolerances) и запуска анализа методом Монте-Карло;

- научиться управлять форматом вывода плоттера.

Выполнение.

1 Загрузите схему 40kFilter3.ms9. На выходе фильтра добавлено нагрузочное сопротивление (Rload). Это необходимо для проведения анализа потребляемой мощности.

2 Запустите эмуляцию, чтобы получить графики Боде и временной зависимости. Откройте панель инструментов двойным щелчком по иконкам «Графика Боде» (Bode plotter) и Осциллографа (Oscilloscope). Запустите эмуляцию, нажав на кнопку с молнией или кнопку F5. Остановите эмуляцию после отображения «Графика Боде». Закройте панели инструментов кнопкой «Закрыть» (Close) на каждой из них.

Примечание – Можно открывать и закрывать панели инструментов двойным щелчком по соответствующей иконке.

3 Откройте настройки функции анализа переменного тока «Эмуляция /Анализ/Анализ переменного тока» (Simulate/Analyses/AC Analysis):

a) на закладке «Результаты» (Output) удалите все переменные из колонки «Выбранные переменные» (Selected variables) таблицы анализа в правой части диалогового окна. Для этого выберите все переменные в колонке и нажмите «Удалить» (Remove);

б) выберите выходную переменную \$ и нажмите «Добавить» (Add) для организации блока входных и выходных переменных соответственно \$input и \$output;

в) точка тестирования (testpoint) перейдет в правую часть под окно «Выбранные для анализа переменные».

4 Проверьте выходные параметры и эмуляцию.

5 Нажмите «Эмулировать» (Simulate). Откроется плоттер с несколькими закладками. Последние три будут: осциллограф, плоттер Боде,

анализ переменного тока. Сравните полученные графики на плоттере Боде и график анализа переменного тока.

6 Следующие шаги позволят вам настроить свойства графика функции анализа переменного тока. Это общие методы настройки любого графика.

7 Левым щелчком на графике «Амплитуда» (Magnitude) (верхний график) сделайте его активным (рисунок 86). Активный график выделен небольшой стрелкой в левой части окна:

General	Traces	Left axis	Bottom axis	Right axis	Top axis			
Label	Cha	nnel_A Volta	ige(V)				Font	
Axis	abled	Pen siz	e: 0	×	Black	•	Font	t
Scale	ear	(Dogarithmic	O	Decibels	0	Octave	
Range Min:	-0.06			Max: 0.0	6		Auto-ra	ange
Divisio Total t	ons ticks:	6	Minor ti	cks: 1		Precision:	1	

Рисунок 86 – Установка свойств графика «Амплитуда»

a) кликните правой кнопкой на левой оси, чтобы открыть «Свойства графика» (Graph Properties):

- выберите закладку «Левая ось» (Left Axis);

- введите на ней следующие параметры:

- в разделе «Масштаб» (Scale) выберите «Децибелы» (Decibels);

- в диалоге «Метки» (Label) наберите «Усиление, дБ» (Gain, dB);

- в разделе «Ось» (Axis) выберите «Включена» (Enabled) и «Толщина линии» (PenSize) 1;

- в разделе «Диапазон» (Range) установите нижний предел – 50, верхний – 10;

- в разделе «Сетка» (Divisions) установите: всего линий» (Total Ticks) – 4, вспомогательных линий» (Minor Ticks) – 2, точность (Precision) – 3;

– нажмите кнопку «Применить» (Apply);

б) перейдите на закладку «Нижняя ось» (Bottom Axis):

– выберите «Логарифмический масштаб» (Logarithmic Scale). Установите диапазон частот (Frequency Range) от 103 до 106;

– нажмите «Применить» (Apply) и ОК.

8 Задайте параметры нижнего (фазового) графика, показанные на рисунке 87. На закладке «Нижняя ось» установите диапазон от 103 до 106. После этого сравните графики Боде и «Анализа переменного тока», наложив амплитудные зависимости.

eneral Iraci	es concaxis b	octom axis Righ	t axis Top axis		
Label					
Label: Pi	hase (Deg)				<u>F</u> ont
Axis					
Enabled	Pen size:	0	Black	-	Font
Scale					
Linear	0	.ogarithmic	O Decibels	0	ctave
		-		-	-
Range	16	Marrie	0.05		Auto
MI <u>II</u> : 0.0		Md <u>x</u> ;	0.00		Auto-range
Divisions		_		_	
Total ticks:	6	Minor ticks:	1	Precision:	1

Рисунок 87 – Задание параметров графика «Фаза»

9 Выберите амплитудный График Боде щелчком мыши:

a) выберите «Наложить зависимости» (Overlay Traces) из меню «Инструменты» (Tools);

б) выберите Graph_1 «Анализ переменного тока» (AC Analysis), этот график должен быть вторым снизу. Откроется новая страница плоттера с двумя наложенными зависимостями. Можно увеличить масштаб, чтобы проанализировать область, в которой есть оба графика. Прижмите левую кнопку мыши и выделите интересующую область вблизи максимума зависимости (рисунок 88).

Примечание – Характеристики графиков вблизи максимумов зависимостей несколько отличаются друг от друга. Это объясняется разной частотой оцифровки двух методов. Частоту оцифровки можно изменить при настройке функции анализа.

10 Изучите возможность проведения точных измерений с помощью плоттера:

a) откройте закладку «График Боде» (Bode Plot) в плоттере;

б) включите курсоры с помощью пункта «Показать/Скрыть курсоры» (Show/Hide Cursors) меню Вид (View);

в) выберите один курсор и вызовите его контекстное меню;

г) выберите «Перейти к следующему максимуму» (Go to next Y MAX), чтобы найти пик;

д) выберите пункт «Установить значение Y» (SetY_Value) и введите значение на 3 меньше максимума. Так вы перейдете в точку 3 дБ;

е) посмотрите результирующее значение в числовом окне.

Рисунок 88 – Увеличение масштаба наложенных графиков

11 Выполните анализ переходных процессов (Transient Analysis) по этапам: «Эмуляция/Анализ/Анализ переходных процессов» (Simulate/Analyses/Transient Analysis):

а) установите параметры анализа, как показано ниже. Примечание: диалоговое окно можно увеличить, нажав кнопку «Больше» (More);

б) откройте закладку Результаты (Output) (рисунок 89);

в) выберите узлы \$input и \$output в качестве «Выбранных переменных для анализа» (Selected Variables for Analysis);

г) нажмите кнопку «Эмулировать». Сравните графики с «Осциллографом». Затем мы настроим «Анализ Фурье».

12 Откройте панель инструментов генератора сигналов и задайте прямоугольные импульсы (square wave):

a) откройте Эмуляция/Анализ/Фурье Анализ (Simulate/Analyses/ Fourier Analysis);

б) нажмите обе кнопки «Оценить» (Estimate), чтобы автоматически подобрать параметры оцифровки и анализа переходных процессов;

в) откройте закладку «Результаты»;

г) в качестве выбранных для анализа переменных выберите узлы \$input и \$output; д) нажмите «Эмулировать» (Simulate);

Примечание – Результаты отображаются на двух отдельных страницах плоттера.

e) выполните анализ Монте-Карло: «Эмуляция/Анализ/Анализ Монте-Карло» (Simulate/Analyses/Monte-Carlo).

					_	Reset t	o default
utomatically determine	ne initial conditior	าร			•		
arameters							
art time (TSTART):	0		s				
nd time (TSTOP):	0.001		s				
Maximum time step	settings (TMAX)						
🔘 Minimum numb	er of time points	100)				
Maximum time	step (TMAX)	1e-	005	s			
Generate time	steps automatic	ally					
fore options							
Set initial time step	p (TSTEP):	1e-	005	s			
Ectimate maximum	n time step based	d on net li	st (TMAX)				
	arameters art time (TSTART): id time (TSTOP): Maximum time step Minimum numb Maximum time Generate time tore options Set initial time ste	arameters art time (TSTART): 0 d time (TSTOP): 0.001 Maximum time step settings (TMAX) Minimum number of time points Maximum time step (TMAX) G Generate time steps automatic tore options Set initial time step (TSTEP):	arameters art time (TSTART): d time (TSTOP): Maximum time step settings (TMAX) Minimum number of time points Maximum time step (TMAX) G Generate time steps automatically tore options Set initial time step (TSTEP): 1e-	araneters art time (TSTART):	arameters art time (TSTART):	araneters art time (TSTART):	arameters art time (TSTART):

Рисунок 89 – Настройка анализа переходных процессов

13 В основном диалоговом окне (frontdialogbox) выберите функцию «Добавить новый допуск» (Add a newtolerance):

a) в списке «Тип параметра» (Parameter Type) выберите «Параметр прибора» (Device Parameter);

б) в списке «Тип прибора» (Device Type) выберите «Резистор» (Resistor). Укажите имя rrl. в разделе «Допуск» (Tolerance) выберите «Тип допуска» (Tolerance Type): «Процент» (Percent), установите значение 10. Нажмите «Принять» (Ассерt) (рисунок 90);

в) еще раз выберите «Добавить новый допуск» (Add a new tolerance) и повторите действия, указав имя rr2;

г) настройте параметры анализа;

д) перейдите на закладку «Параметры анализа» (Analysis Parameters).

e) выберите для работы «Анализ переменного тока» (AC Analysis), 5 раз и выходную переменную (Output variable) Soutput;

ж) нажмите кнопку «Редактировать функцию» (EditAnalysis) и настройте функцию анализа переменного тока;

lerance		Ŀ
Parameter Type	Device Parameter	
Parameter		
Device Type	Resistor	
Name	rr1 💙	Present Value
Parameter	resistance	50
Description	Resistance	
Tolerance Tolerance Type Tolerance value Distribution	Percent V 10 Gaussian V	

Рисунок 90 – Установка допусков прибора

з) выберите диапазон FSTART – 1 кГц, FSTOP – 1 МГц, «Число точек декады» (Number of points perdecade) – 100, определите «Вертикальный масштаб» (Vertical scale) и установите значение «Децибелы» (Decibel);

и) нажмите кнопку «Эмулировать» (Simulate).

5 ЗАДАНИЯ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Практическое занятие № 1

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ИСТОЧНИКОВ ЦИФРОВОГО СООБЩЕНИЯ

Цель: освоить методику расчета информационных характеристик цифровых источников сообщения.

Задание:

1 Рассчитать энтропию, избыточность, коэффициент сжатия и количество информации цифрового источника сообщения.

2 Сформулировать выводы о проделанной работе.

Исходные данные для расчета: данные выбираются из Приложения Б по варианту, указанному преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории.

Результаты расчетов для удобства их восприятия следует оформить в виде таблицы 9.

Алфавит источника информации Z _i	Количество символов в сообщении С	Вероятность появления символов на выходе источника <i>P</i> (<i>Z_i</i>)	Энтропия, бит/знак <i>H</i> (Z _i)	H _{max}
0				
1				
9				
Итого 10		1,0		

Таблица 9 – Результаты расчета энтропии

При расчетах относительной избыточности, коэффициента сжатия и количества информации вначале следует привести расчетную формулу, затем выражение с проставленными числовыми данными и, наконец, полученные результаты с указанием размерности.

Практическое занятие № 2

ОПРЕДЕЛЕНИЕ ИНТЕРВАЛА ДИСКРЕТИЗАЦИИ И ЧИСЛА ОТСЧЁТОВ ДЛЯ ОПИСАНИЯ ВИДЕОИМПУЛЬСОВ

Цель: освоить методику расчёта интервалов дискретизации и числа импульсов, необходимых для описания видеоимпульса.

Задание:

1 Привести график прямоугольного импульса с указанием амплитуды и длительности.

2 Определить интервал дискретизации и число отсчетов, необходимых для описания видеоимпульса.

3 Сформулировать выводы о проделанной работе.

Исходные данные для расчетов: выбираются из приложения В по варианту, указанному преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории. Для выполнения расчетов используются формулы для интервала дискретизации Δt и числа отсчетов *N*.

Практическое занятие № 3

РАСЧЕТ ОТНОСИТЕЛЬНЫХ И АБСОЛЮТНЫХ УРОВНЕЙ ПЕРЕДАЧИ (ЗАТУХАНИЯ) ПО НАПРЯЖЕНИЮ, ТОКУ И МОЩНОСТИ ДЛЯ ЛИНИИ СВЯЗИ СИСТЕМЫ ПЕРЕДАЧИ ДАННЫХ

Цель: освоить методику расчетов уровней передачи (затухания) по напряжению, току и мощности для двухпроводной цепи

Задание:

1 Дать определения уровней передачи.

2 Определить, чему равны относительные уровни мощности, напряжения и тока в рассматриваемой т. *Х* относительно начала цепи и в начале цепи относительно рассматриваемой точки.

3 Определить абсолютные уровни напряжения, тока и мощности в начале цепи и в рассматриваемой т. *X* через абсолютные уровни.

Исходные данные для расчетов: выбираются из таблицы 10 по варианту, указанному преподавателем.

Пологота				Послед	цняя ци	фра вар	ианта			
Параметр	1	2	3	4	5	6	7	8	9	0
U_0, B	10	45	20	30	35	40	15	25	50	5
<i>I</i> ₀ , мА	40	30	15	90	60	20	70	80	90	55
п			Π	[редпос:	педняя	цифра в	арианта	a		
Параметр	1	2	3	4	5	6	7	8	9	0
U D										
U_x , B	0,6	0,9	0,5	0,7	1,0	0,2	0,8	0,4	0,3	0,1

Таблица 10 – Значения напряжения и тока, необходимые для расчета

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории. Расчет уровней передачи вести в децибелах (дБ) с последующим переводом в Неперы (Нп), используя соотношение между этими величинами: 1 дБ = 0,115 Нп. Напряжение и ток в начале цепи равны, соответственно U_0 и I_0 , а в рассматриваемой точке U_x и I_x . Абсолютные уровни обозначены, соответственно $U_{3\tau}$, $I_{3\tau}$.

Практическое занятие № 4

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КАНАЛОВ СВЯЗИ

Цель: освоить методику расчета параметров канала связи на основе известного физического объема канала

Задание:

1 Определить предельную мощность сигнала, который может быть передан по данному каналу, если физический объем канала равен V_к.

2 Сформулировать выводы о проделанной работе.

Исходные данные для расчетов. Канал связи с полосой $F_{\kappa} = \Delta f = f_{\rm B} - f_{\rm H}$ предполагается использовать в течение T_{κ} секунд. В канале действует шум с равномерной спектральной плотностью мощности G_{κ} , мВт/Гц.

Исходные данные для расчетов выбираются из приложения Г по варианту, указанному преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории. Для «белого» шума, имеющего равномерную спектральную плотность мощности G_k можно записать: $P_{\rm III} = G_{\rm K}F_{\rm K}$.

Подставив это выражение в формулу для V_к, следует преобразовать полученное уравнение для вычисления искомого значения P_c.

Практическое занятие № 5

ПРОЕКТИРОВАНИЕ СХЕМ СЧЁТЧИКОВ ИМПУЛЬСОВ

Цель: изучить способы построения схем счётчиков и научиться проектировать счётчики с непосредственными связями и различными коэффициентами счёта.

Задание. Спроектировать схему суммирующего или вычитающего счетчика с непосредственными связями и различными коэффициентами счёта

Исходные данные для расчетов. Задаются преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории. Таблица состояний счетчика должна заканчиваться строкой, соответствующей заданному коэффициенту счета.

Практическое занятие № 6

ПРОЕКТИРОВАНИЕ СХЕМ ДЕШИФРАТОРОВ

Цель: изучить принцип построения и основы проектирования линейных и пирамидальных дешифраторов на логических элементах.

Задание. Спроектировать схему дешифратора с защитой от запрещенных кодовых комбинаций

Исходные данные для расчетов. Задаются преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие

сведения из теории. Таблица истинности для дешифратора должна содержать все возможные состояния выходов, а для варианта дешифратора с защитой от запрещенных кодовых комбинаций должна содержать строки только с разрешенными состояниями.

Практическое занятие № 7

ПРОЕКТИРОВАНИЕ СХЕМ РАСПРЕДЕЛИТЕЛЕЙ

Цель: изучить принципы построения и основы проектирования счетноматричных распределителей импульсов

Задание. Разработать схему счетно-матричного распределителя импульсов с заданным количеством выходов.

Исходные данные для расчетов. Задаются преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории. Таблица состояний выходов распределителя должна содержать все возможные состояния счетчика импульсов, а для варианта распределителя с заданными состояниями должна содержать строки только с разрешенными состояниями.

Практическое занятие № 8

ОПРЕДЕЛЕНИЕ АМПЛИТУДНЫХ И ЧАСТОТНЫХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Цель: освоить методику расчетов и построения логарифмических амплитудных и частотных характеристик измерительных преобразователей.

Задание. Построить логарифмические амплитудно- и фазочастотную характеристики (ЛАЧХ, ЛФЧХ) измерительного преобразователя с передаточной функцией

$$K(p) = \frac{K_0}{T_2^2 p^2 + T_1 p + 1}.$$

Исходные данные для расчетов. Задаются преподавателем.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории.

Пример расчетов. Рассмотрим апериодическое звено второго порядка с K_0 = 40, $T_1 = 0.34$ с, $T_2 = 0.0064$ с. Его можно представить в виде параллельного соединения апериодических звеньев 1-го порядка. Для этого следует найти их передаточные функции.

Определим корни знаменателя передаточной функции, вид которых показывает, соответствует ли им полином второй степени, находящийся в знаменателе передаточной функции, двум апериодическим звеньям первого порядка, или он соответствует колебательному звену. Подставим исходные данные в уравнение

$$T_2^2 p^2 + T_1 p + 1 = 0$$

и получим следующее выражение: $0,00004p^2 + 0,34p + 1 = 0$.

Дискриминант D и корни p1 и p2 этого уравнения находим из соотношений

$$D = b^2 \quad 4ac; \ p_{1,2} = \frac{T_1 \pm \sqrt{T_1^2 - 4T_2^2}}{2T_2^2}.$$

Они имеют следующие значения:

$$D = 0.34^2 - 4.00064 \cdot 1 = 0.3;$$

$$p_1 = \frac{0,340 + 0,300}{0,0128} = 3,1; p_2 = \frac{0,340 - 0,300}{0,0128} = 50.$$

Корни действительные, следовательно, полином второй степени соответствует преобразователю с двумя параллельно соединенными апериодическими звеньями первого порядка:

$$W(p) = \frac{40}{(1+0,00004 \ p)(1+0,1156 \ p)}.$$

Найдем ЛАХ измерительного преобразователя, произведя замену оператора Лапласа *p* на *j* ω :

$$L(\omega) = 20 \log[K(j\omega)];$$

$$L(\omega) = 20 \log\left[\frac{40}{(1+0,00004 \ \omega)(1+0,1156 \ \omega)}\right] =$$

$$= 20 \log 40 \quad 20 \log\left(\sqrt{1+0,00004^{2} \ \omega^{2}} \quad \sqrt{1+j0,1156^{2} \ \omega^{2}}\right)$$

Подставляя в данную формулу значения ω , получим значения амплитуды *К*, дБ, приведенные в таблице 11.

Таблица 1	1 -	 Расчетные значения амплитуды . 	K
-----------	-----	--	---

ω, рад/с 1 10 100 500					
	ω, рад/с	1	10	100	500

<i>К</i> , дБ	13,5	8,4	0,5	-6
---------------	------	-----	-----	----

По расчетным данным, приведенным в таблице 11, строим зависимость $L(\omega)$ (рисунок 93).

Рисунок 91 – Логарифмическая АЧХ измерительного преобразователя

Фазовая характеристика имеет вид $\phi(\omega) = -\arg K(j\omega)$.

В случае апериодического звена второго порядка $\phi(\omega)$ является суммой фазовых характеристик $\phi_1(\omega)$, $\phi_2(\omega)$ двух апериодических звеньев первого порядка с постоянными времени T_3 и T_4 , соответственно. Можно записать:

$$\frac{K_0}{(1+T_3p)(1+T_4p)} = \frac{K_3}{1+T_3p} + \frac{K_4}{1+T_4p}$$

Численные значения коэффициентов *K*₃ и *K*₄ определяются методом неопределенных коэффициентов:

$$A (1 + 0,1156p) + B (1 + 0,000046p) = A + 0,1156Ap + B + 0,00004Bp = 40.$$

$$\begin{cases}
A + B = 40; \\
0,1156 A + 0,00004 B = 0.
\end{cases}$$

$$A = 40 - B; \\
0,1156 (40 - B) + 0,00004B = 4,62 - 0,1156B + 0,00004B = 0.$$

$$\frac{B = 40,2; A = -0,2; A = K_3; B = K_4;}{(1+0,00004 \ p)(1+0,1156 \ p)} = \frac{0,2}{1+0,00004 \ p} \quad \frac{40,2}{1+0,1156 \ p}.$$

Фазовые характеристики находим по формулам $\varphi_3 = -\arctan \varphi_3$; $\varphi_4 = -\arctan \varphi_4$. Результаты расчетов приведены в таблице 12.

ω, рад/с	<i>ф</i> 1, град	ф2, рад	ф, град
10	1,47	84,50	85,97
100	9,70	91,00	100,70
1000	63,00	92,00	155,00

Таблица 12 – Расчетные значения фазовых характеристик

По данным таблицы 12 строим зависимость $\phi(\omega)$ (рисунок 92).

Рисунок 92 – Логарифмическая ФЧХ измерительного преобразователя

Практическое занятие № 9

ИЗМЕРЕНИЕ МОЩНОСТИ И КОЭФФИЦИЕНТА ПОЛЕЗНОГО ДЕЙСТВИЯ РАДИОПЕРЕДАТЧИКА НА ВЫСОКИХ ЧАСТОТАХ

Цель: освоить методику расчета характеристик радиопередатчиков телеметрических систем.

Задание:

1 Определить мощность передатчика в эквиваленте антенны.

2 Определить коэффициент полезного действия передатчика.

Исходные данные для расчетов. Приведены в таблице 13.

Методика выполнения работы. В разд. 1 отчета приводятся краткие сведения из теории по измерению мощности радиопередатчиков в СВЧ-диапазоне, параметров передатчиков и приемников, в устройствах радиосвязи при передаче телеметрической информации.

Hamkawana		Последняя цифра шифра								
паименование	1	2	3	4	5	6	7	8	9	0
I_a, A	2	3	3	2,5	4	3,5	6	4	3,5	4
<i>Ra</i> , Ом	0,5	0,3	0,5	1,0	0,5	1,0	0,6	0,4	0,5	0,3
<i>U</i> _{и.п.} , В	6	9	12	15	24	60	220	12	15	24
<i>I</i> _{и.п.} , А	2	3	2	3	2	1	0,5	3	2	1

Таблица 13 – Исходные данные для расчета характеристик передатчиков

СПИСОК ИСПОЛЬЗОВАННОЙ И РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1 **Ильин, В. А.** Телеуправление и телеизмерение: пособие для вузов / В. А. Ильин. – М. : Энергия, 1974. – 408 с.

2 Теория передачи сигналов на железнодорожном транспорте / Г. В. Горелов [и др.] – М.: Транспорт, 2001. – 415 с.

3 Сапожников, В. В. Теоретические основы железнодорожной автоматики и телемеханики / В. В. Сапожников, Ю. А. Кравцов, Вл. В. Сапожников. – М. : Транспорт, 1995. – 320 с.

4 **Карлащук, В. И.** Электронная лаборатория на IBM PC. Программа Electronic Workbench и ее применение / В. И. Карлащук. – М. : Солон-Р, 2001. – 726 с.

5 **Пухальский, Г. И.** Проектирование дискретных устройств на интегральных микросхемах / Г. И. Пухальский, Т. Я. Новосельцева. – М. : Радио и связь, 1990. – 304 с.

6 Д**митренко, И. Е.** Измерения и диагностирование в системах железнодорожной автоматики, телемеханики и связи / И. Е. Дмитренко, В. В. Сапожников, Д. В. Дьяков; под ред. И. Е. Дмитренко. – М. : Транспорт, 1994. – 263 с.

7 Бартновский, А. Л. Измерения в электротехнических устройствах железнодорожного транспорта / А. Л. Бартновский, В. О. Козин. – М. : Транспорт, 1980. – 407 с.

8 **Малиновский, В. Н.** Электрические измерения / В. Н. Малиновский, Р. М. Демидова-Панферова, Ю. Н. Евланов. – М. : Энергоатомиздат, 1985. – 416 с.

9 Сапожников, В. В. Дискретные устройства железнодорожной автоматики, телемеханики и связи / В. В. Сапожников, Ю. А. Кравцов, Вл. В. Сапожников. – М. : Транспорт, 1988. – 255 с.

10 Фомичев, В. Н. Элементы теории информации: учеб.-метод. пособие для практ. занятий по дисциплине «Теория передачи сигналов» / В. Н. Фомичев. – Гомель : БелГУТ, 2006. – 69 с.

11 Клюев, Л. Л. Теория электрической связи / Л. Л. Клюев. – М. : Дизайн ПРО, 1998. – 336 с.

12 Наговицын, В. С. Системы диагностики железнодорожного подвижного состава на основе информационных технологий / В. С. Наговицын. – М. : ВИНИТИ РАН, 2004 – 248 с.

13 Бурченков, В. В. Измерительные и каналообразующие преобразователи: лаб. практ. по дисциплине «Автоматический контроль технического состояния подвижного состава» / В. В. Бурченков. – Гомель : БелГУТ, 2007. – 56 с.

14 Диагностирование устройств железнодорожной автоматики и агрегатов подвижных единиц / А. Б. Бойник [и др.]. – М. : Новое слово, 2008. – 302 с.

15 Граф, Р. Электронные схемы: 1300 примеров / Р. Граф. – М. : Мир, 1989. – 688 с.

16 Баранов, Л. А. Аналого-цифровые преобразователи устройств автоматики и телемеханики электрифицированных железных дорог / Л. А. Баранов, Е. Е. Бакеев. – М. : Транспорт, 1979. – 207 с.

17 Д**митренко, И. Е.** Измерения в устройствах автоматики, телемеханики и связи на железнодорожном транспорте / И. Е. Дмитренко, А. А. Устинский, В. И. Цыганков. – М. : Транспорт, 1982. – 312 с.

18 Тутевич, В. Н. Телемеханика / В. Н. Тутевич. – М. : Энергия, 1979. – 384 с.

19 Устинский, А. А. Автоматика, телемеханика и связь на железнодорожном транспорте / А. А. Устинский, Б. М. Степенский, Н. А. Цыбуля. – М. : Транспорт, 1985. – 439 с.

20 Бурченков, В. В. Измерительный комплекс на ЭВМ : лаб. практ. по дисциплине «Специальный измерения и техническая диагностика» / В. В. Бурченков. – Гомель : БелГУТ, 2004. – 37 с.

21 Автоматизированная система контроля подвижного состава АСК ПС. Центральный пост АСК ПС. Программное обеспечение ПО ЦП АСК ПС Руководство системного программиста. – Екатеринбург : Инфотекс, 2006. – 25 с.

22 Автоматизированная система контроля подвижного состава АСК ПС. Автоматизированное рабочее место оператора Центрального пункта контроля АСК ПС. Программное обеспечение ПО АРМ ЦПК. Руководство пользователя. – Екатеринбург : Инфотекс, 2006. – 48 с.

ПРИЛОЖЕНИЕ А (справочное)

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИЙ η[P(aK)]

P(aK)	$\eta[P(aK)]$	P(aK)	$\eta[P(aK)]$	P(aK)	$\eta[P(aK)]$
0,00	0	0,34	0,5292	0,68	0,3784
0,01	0,0664	0,35	0,5301	0,69	0,3694
0,02	0,1128	0,36	0,5306	0,70	0,3602
0,03	0,1518	0,37	0,5307	0,71	0,3508
0,04	0,1858	0,38	0,5305	0,72	0,3412
0,05	0,2161	0,39	0,5298	0,73	0,3314
0,06	0,2435	0,40	0,5288	0,74	0,3215
0,07	0,2686	0,41	0,5274	0,75	0,3113
0,08	0,2915	0,42	0,5256	0,76	0,3009
0,09	0,3126	0,43	05236	0,77	0,2903
0,10	0,3322	0,44	0,5210	0,78	0,2796
0,11	0,3503	0,45	0,5184	0,79	0,2687
0,12	0,3671	0,46	0,5153	0,80	0,2575
0,13	0,3826	0,47	0,5120	0,81	0,2462
0,14	0,3971	0,48	0,5083	0,82	0,2348
0,15	0,4105	0,49	0,5043	0,83	0,2231
0,16	0,4230	0,50	0,5000	0,84	0,2112
0,17	0,4346	0,51	0,4954	0,85	0,1992
0,18	0,4453	0,52	0,4906	0,86	0,1871
0,19	0,4552	0,53	0,4854	0,87	0,1748
0,20	0,4644	0,54	0,4800	0,88	0,1623
0,21	0,4728	0,55	0,4744	0,89	0,1496
0,22	0,4806	0,56	0,4685	0,90	0,1368
0,23	0,4877	0,57	0,4623	0,91	0,1238
0,24	0,4941	0,58	0,4558	0,92	0,1107
0,25	0,5000	0,59	0,4491	0,93	0,0974
0,26	0,5053	0,60	0,4422	0,94	0,0839
0,27	0,5100	0,61	0,4350	0,95	0,0703
0,28	0,5142	0,62	0,4276	0,96	0,0565
0,29	0,5179	0,63	0,4199	0,70	0,0426
0,30	0,5211	0,64	0,4121	0,98	0,0286
0,31	0,5238	0,65	0,4040	0,99	0,0144
0,32	0,5260	0,66	0,3957	1,00	0
0,33	0,5278	0,67	0,3871	_	_

ПРИЛОЖЕНИЕ Б (обязательное)

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ИНФОРМАЦИОННЫХ ХАРАКТЕРИСТИК ЦИФРОВЫХ ИСТОЧНИКОВ СООБЩЕНИЙ

4	0	1	2	3	4	5	6	7	8	9
0	10	15	30	45	60	75	90	105	120	135
10	150	165	180	195	210	225	240	255	270	285
20	300	315	330	345	360	375	390	405	420	435
30	450	465	480	495	510	525	540	555	570	585
40	600	615	630	645	660	675	690	705	720	735
50	750	765	780	795	810	825	840	855	970	885
60	900	915	930	945	960	975	990	1005	1020	1035
70	1050	1065	1080	1095	1110	1125	1140	1155	1170	1185
80	1200	1215	1230	1245	1260	1275	1290	1305	1320	1335
90	1350	1365	1380	1395	1410	1425	1440	1455	1470	1485
0	8	16	32	48	64	80	96	112	128	144
10	160	176	192	208	224	240	256	272	288	304
20	320	336	352	368	384	400	416	432	448	464
30	480	496	512	528	544	560	576	592	608	624
40	640	656	672	688	704	720	736	752	768	784
50	800	816	832	848	864	880	896	912	928	944
60	960	976	992	1008	1024	1040	1056	1072	1088	1104
70	1120	1136	1152	1168	1184	1200	1216	1232	1248	1264
80	1280	1296	1312	1328	1344	1360	1376	1392	1408	1424
90	1440	1456	1472	1488	1504	1520	1536	1552	1568	1584

Вариант 1

Вариант 2

4	0	1	2	3	4	5	6	7	8	9
0	0	17	34	51	68	85	102	119	136	153
10	170	187	204	221	238	255	272	289	306	323
20	340	357	374	391	408	425	442	459	476	493
30	510	527	544	561	578	595	612	629	646	663
40	680	697	714	731	748	765	782	799	816	833
50	850	867	884	901	918	935	952	969	986	1003
60	1020	1037	1054	1071	1088	1105	1122	1139	1156	1173
70	1190	1207	1224	1241	1258	1275	1292	1309	1326	1343
80	1360	1377	1394	1411	1428	1445	1462	1479	1496	1513
90	1530	1547	1564	1581	1598	1615	1632	1649	1666	1683
0	9	18	36	54	72	90	108	126	144	162
10	180	198	216	234	252	270	288	306	324	342
20	360	378	396	414	432	450	468	486	504	522
30	540	558	576	594	612	630	648	666	684	702
40	720	738	756	774	792	810	828	846	864	882
50	900	918	936	954	972	990	1008	1026	1044	1062
60	1080	1098	1116	1134	1152	1170	1188	1206	1224	1242
70	1260	1278	1296	1314	1332	1350	1368	1386	1404	1422
80	1440	1458	1476	1494	1512	1530	1548	1566	1584	1602
90	1620	1638	1656	1674	1692	1710	1728	1746	1764	1782

4	0	1	2	3	4	5	6	7	8	9
0	17	23	46	69	92	115	138	161	184	207
10	230	253	276	299	322	345	368	391	414	437
20	460	483	506	529	552	575	598	621	644	667
30	690	713	736	759	782	805	828	851	874	897
40	920	943	966	989	1012	1035	1058	1081	1104	1127
50	1150	1173	1196	1219	1242	1265	1288	1311	1334	1357
60	1380	1403	1426	1449	1472	1495	1518	1541	1564	1587
70	1610	1633	1656	1679	1702	1725	1748	1771	1794	1817
80	1840	1863	1886	1909	1932	1955	1978	2001	2024	2047
90	2070	2093	2116	2139	2162	2185	2208	2231	2254	2277
0	12	24	48	72	96	120	144	168	192	216
10	240	264	288	312	336	360	384	408	432	456
20	480	504	528	552	576	600	624	648	672	696
30	720	744	768	792	816	840	864	888	912	936
40	960	984	1008	1032	1056	1080	1104	1128	1152	1176
50	1200	1224	1248	1272	1296	1320	1344	1368	1392	1416
60	1440	1464	1488	1512	1536	1560	1584	1608	1632	1656
70	1680	1704	1728	1752	1776	1800	1824	1848	1872	1896
80	1920	1944	1968	1992	2016	2040	2064	2088	2112	2136
90	2160	2184	2208	2232	2256	2280	2304	2328	2352	2376

Вариант 3

Вариант 4

4	0	1	2	3	4	5	6	7	8	9
0	14	25	50	75	100	125	150	175	200	225
10	250	275	300	325	350	375	400	425	450	475
20	500	525	550	575	600	625	650	675	700	725
30	750	775	800	825	850	875	900	925	950	975
40	1000	1025	1050	1075	1100	1125	1150	1175	1200	1225
50	1250	1275	1300	1325	1350	1375	1400	1425	1450	1475
60	1500	1525	1550	1575	1600	1625	1650	1675	1700	1725
70	1750	1775	1800	1825	1850	1875	1900	1925	1950	1975
80	2000	2025	2050	2075	2100	2125	2150	2175	2200	2225
90	2250	2275	2300	2325	2350	2375	2400	2425	2450	2475
0	13	26	52	78	104	130	156	182	208	234
10	260	286	312	338	364	390	416	442	468	494
20	520	546	572	598	624	650	676	702	728	754
30	780	806	832	858	884	910	936	962	988	1014
40	1040	1066	1092	1118	1144	1170	1196	1222	1248	1274
50	1300	1326	1352	1378	1404	1430	1456	1482	1508	1534
60	1560	1586	1612	1638	1664	1690	1716	1742	1768	1794
70	1820	1846	1872	1898	1924	1950	1976	2002	2028	2054
80	2080	2106	2132	2158	2184	2210	2236	2262	2288	2314
90	2340	2366	2392	2418	2444	2470	2496	2522	2548	2574

5	0	1	2	3	4	5	6	7	8	0
5	11	21	(2)	02	124	155	196	217	249	270
0	11	31	62	93	124	155	180	217	248	219
10	310	341	372	403	434	465	496	527	558	589
20	620	651	682	713	744	775	806	837	868	899
30	930	961	992	1023	1054	1085	1116	1147	1178	1209
40	1240	1271	1302	1333	1364	1395	1426	1457	1488	1519
50	1550	1581	1612	1643	1674	1705	1736	1767	1798	1829
60	1860	1891	1922	1953	1984	2015	2046	2077	2108	2139
70	2170	2201	2232	2263	2294	2325	2356	2387	2418	2449
80	2480	2511	2542	2573	2604	2635	2666	2697	2728	2759
90	2790	2821	2852	2883	2914	2945	2976	3007	3038	3069
0	16	32	64	96	128	160	192	224	256	288
10	320	352	384	416	448	480	512	544	576	608
20	640	672	704	736	768	800	832	864	896	928
30	960	992	1024	1056	1088	1120	1152	1184	1216	1248
40	1280	1312	1344	1376	1408	1440	1472	1504	1536	1568
50	1600	1632	1664	1696	1728	1760	1792	1824	1856	1888
60	1920	1952	1984	2016	2048	2080	2112	2144	2176	2208
70	2240	2272	2304	2336	2368	2400	2432	2464	2496	2528
80	2560	2592	2624	2656	2688	2720	2752	2784	2816	2848
90	2880	2912	2944	2976	3008	3040	3072	3104	3136	3168

Вариант 5

Вариант 6

6	0	1	2	3	4	5	6	7	8	9
0	15	33	66	99	132	165	198	231	264	297
10	330	363	396	429	462	495	528	561	594	627
20	660	693	726	759	792	825	858	891	924	957
30	990	1023	1056	1089	1122	1155	1188	1221	1254	1287
40	1320	1353	1386	1419	1452	1485	1518	1551	1584	1617
50	1650	1683	1716	1749	1782	1815	1848	1881	1914	1947
60	1980	2013	2046	2079	2112	2145	2178	2211	2244	2277
70	2310	2343	2376	2409	2442	2475	2508	2541	2574	2607
80	2640	2673	2706	2739	2772	2805	2838	2871	2904	2937
90	2970	3003	3036	3069	3102	3135	3168	3201	3234	3267
0	17	34	68	102	136	170	204	238	272	306
10	340	374	408	442	476	510	544	578	612	646
20	680	714	748	782	816	850	884	918	952	986
30	1020	1054	1088	1122	1156	1190	1224	1258	1292	1326
40	1360	1394	1428	1462	1496	1530	1564	1598	1632	1666
50	1700	1734	1768	1802	1836	1870	1904	1938	1972	2006
60	2040	2074	2108	2142	2176	2210	2244	2278	2312	2346
70	2380	2414	2448	2482	2516	2550	2584	2618	2652	2686
80	2720	2754	2788	2822	2856	2890	2924	2958	2992	3026
90	3060	3094	3128	3162	3196	3230	3264	3298	3332	3366

7	0	1	2	3	4	5	6	7	8	9
0	21	39	78	117	156	195	234	273	312	351
10	390	429	468	507	546	585	624	663	702	741
20	780	819	858	897	936	975	1014	1053	1092	1131
30	1170	1209	1248	1287	1326	1365	1404	1443	1482	1521
40	1560	1599	1638	1677	1716	1755	1794	1833	1872	1911
50	1950	1989	2028	2067	2106	2145	2184	2223	2262	2301
60	2340	2379	2418	2457	2496	2535	2574	2613	2652	2691
70	2730	2769	2808	2847	2886	2925	2964	3003	3042	3081
80	3120	3159	3198	3237	3276	3315	3354	3393	3432	3471
90	3510	3549	3588	3627	3666	3705	3744	3783	3822	3861
0	20	40	80	120	160	200	240	280	320	360
10	400	440	480	520	560	600	640	680	720	760
20	800	840	880	920	960	1000	1040	1080	1120	1160
30	1200	1240	1280	1320	1360	1400	1440	1480	1520	1560
40	1600	1640	1680	1720	1760	1800	1840	1880	1920	1960
50	2000	2040	2080	2120	2160	2200	2240	2280	2320	2360
60	2400	2440	2480	2520	2560	2600	2640	2680	2720	2760
70	2800	2840	2880	2920	2960	3000	3040	3080	3120	3160
80	3200	3240	3280	3320	3360	3400	3440	3480	3520	3560
90	3600	3640	3680	3720	3760	3800	3840	3880	3920	3960

Вариант 7

Вариант 8

8	0	1	2	3	4	5	6	7	8	9
0	14	41	82	123	164	205	246	287	328	369
10	410	451	492	533	574	615	656	697	738	779
20	820	861	902	943	984	1025	1066	1107	1148	1189
30	1230	1271	1312	1353	1394	1435	1476	1517	1558	1599
40	1640	1681	1722	1763	1804	1845	1886	1927	1968	2009
50	2050	2091	2132	2173	2214	2255	2296	2337	2378	2419
60	2460	2501	2542	2583	2624	2665	2706	2747	2788	2829
70	2870	2911	2952	2993	3034	3075	3116	3157	3198	3239
80	3280	3321	3362	3403	3444	3485	3526	3567	3608	3649
90	3690	3731	3772	3813	3854	3895	3936	3977	4018	4059
0	21	42	84	126	168	210	252	294	336	378
10	420	462	504	546	588	630	672	714	756	798
20	840	882	924	966	1008	1050	1092	1134	1176	1218
30	1260	1302	1344	1386	1428	1470	1512	1554	1596	1638
40	1680	1722	1764	1806	1848	1890	1932	1974	2016	2058
50	2100	2142	2184	2226	2268	2310	2352	2394	2436	2478
60	2520	2562	2604	2646	2688	2730	2772	2814	2856	2898
70	2940	2982	3024	3066	3108	3150	3192	3234	3276	3318
80	3360	3402	3444	3486	3528	3570	3612	3654	3696	3738
90	3780	3822	3864	3906	3948	3990	4032	4074	4116	4158

9	0	1	2	3	4	5	6	7	8	9
0	23	47	94	141	188	235	282	329	376	423
10	470	517	564	611	658	705	752	799	846	893
20	940	987	1034	1081	1128	1175	1222	1269	1316	1363
30	1410	1457	1504	1551	1598	1645	1692	1739	1768	1833
40	1880	1927	1974	2021	2068	2115	2162	2209	2256	2303
50	2350	2397	2444	2491	2538	2585	2632	2679	2726	2773
60	2820	2867	2914	2961	3008	3055	3102	3149	3196	3243
70	3290	3337	3384	3431	3478	3525	3572	3619	3666	3713
80	3760	3807	3854	3901	3948	3995	4042	4089	4136	4183
90	4230	4277	4324	4371	4418	4465	4512	4559	4606	4653
0	24	48	96	144	192	240	288	336	384	432
10	480	528	576	624	672	720	768	816	864	912
20	960	1008	1056	1104	1152	1200	1248	1296	1344	1392
30	1440	1488	1536	1584	1632	1680	1728	1776	1824	1872
40	1920	1968	2016	2064	2112	2160	2208	2256	2304	2352
50	2400	2448	2496	2544	2592	2640	2688	2736	2784	2832
60	2880	2928	2976	3024	3072	3120	3168	3216	3264	3312
70	3360	3408	3456	3504	3552	3600	3648	3696	3744	3792
80	3840	3888	3936	3984	4032	4080	4128	4176	4224	4272
90	4320	4368	4416	4464	4512	4560	4608	4656	4704	4752

Вариант 9

Вариант 10

10	0	1	2	3	4	5	6	7	8	9
0	25	49	98	147	196	245	294	343	392	441
10	490	539	588	637	686	735	784	833	882	931
20	980	1029	1078	1127	1176	1225	1274	1323	1372	1421
30	1470	1519	1568	1617	1666	1715	1764	1813	1862	1911
40	1960	2009	2058	2107	2156	2205	2254	2303	2352	2401
50	2450	2499	2548	2597	2646	2695	2744	2793	2842	2891
60	2940	2989	3038	3087	3136	3185	3234	3283	3332	3381
70	3430	3479	3528	3577	3626	3675	3724	3773	3822	3871
80	3920	3969	4018	4067	4116	4165	4214	4263	4312	4361
90	4410	4459	4508	4557	4606	4655	4704	4753	4802	4851
0	10	50	100	150	200	250	300	350	400	450
10	500	550	600	650	700	750	800	850	900	950
20	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450
30	1500	1550	1600	1650	1700	1750	1800	1850	1900	1950
40	2000	2050	2100	2150	2200	2250	2300	2350	2400	2450
50	2500	2550	2600	2650	2700	2750	2800	2850	2900	2950
60	3000	3050	3100	3150	3200	3250	3300	3350	3400	3450
70	3500	3550	3600	3650	3700	3750	3800	3850	3900	3950
80	4000	4050	4100	4150	4200	4250	4300	4350	4400	4450
90	4500	4550	4600	4650	4700	4750	4800	4850	4900	4950

55	0	1	2	3	4	5	6	7	8	9
0	26	55	110	165	220	275	330	385	440	495
10	550	605	660	715	770	825	880	935	990	1045
20	1100	1155	1210	1265	1320	1375	1430	1485	1540	1595
30	1650	1705	1760	1815	1870	1925	1980	2035	2090	2145
40	2200	2255	2310	2365	2420	2475	2530	2585	2640	2695
50	2750	2805	2860	2915	2970	3025	3080	3135	3190	3245
60	3300	3355	3410	3465	3520	3575	3630	3685	3740	3795
70	3850	3905	3960	4015	4070	4125	4180	4235	4290	4345
80	4400	4455	4510	4565	4620	4675	4730	4785	4840	4895
90	4950	5005	5060	5115	5170	5225	5280	5335	5390	5445
0	28	56	112	168	224	280	336	392	448	504
10	560	616	672	728	784	840	896	952	1008	1064
20	1120	1176	1232	1288	1344	1400	1456	1512	1568	1624
30	1680	1736	1792	1848	1904	1960	2016	2072	2128	2184
40	2240	2296	2352	2408	2464	2520	2576	2632	2688	2744
50	2800	2856	2912	2968	3024	3080	3136	3192	3248	3304
60	3360	3416	3472	3528	3584	3640	3696	3752	3808	3864
70	3920	3976	4032	4088	4144	4200	4256	4312	4368	4424
80	4480	4536	4592	4648	4704	4760	4816	4872	4928	4984
90	5040	5096	5152	5208	5264	5320	5376	5432	5488	5544

Вариант 11

Вариант 12

15	0	1	2	3	4	5	6	7	8	9
0	27	57	114	171	228	285	342	399	456	513
10	570	627	684	741	798	855	912	969	1026	1083
20	1140	1197	1254	1311	1368	1425	1482	1539	1596	1653
30	1710	1767	1824	1881	1938	1995	2052	2109	2166	2223
40	2280	2337	2394	2451	2508	2565	2622	2679	2736	2793
50	2850	2907	2964	3021	3078	3135	3192	3249	3306	3363
60	3420	3477	3534	3591	3648	3705	3762	3819	3876	3933
70	3990	4047	4104	4161	4218	4275	4332	4389	4446	4503
80	4560	4617	4674	4731	4788	4845	4902	4959	5016	5073
90	5130	5187	5244	5301	5358	5415	5472	5529	5586	5643
0	18	58	116	174	232	290	348	406	464	522
10	580	638	696	754	812	870	928	986	1044	1102
20	1160	1218	1276	1334	1392	1450	1508	1566	1624	1682
30	1740	1798	1856	1914	1972	2030	2088	2146	2204	2262
40	2320	2378	2436	2494	2552	2610	2668	2726	2784	2842
50	2900	2958	3016	3074	2132	3190	3248	3306	3364	3422
60	3480	3538	3596	3654	3712	3770	3828	3886	3944	4002
70	4060	4118	4176	4234	4292	4350	4408	4466	4524	4582
80	4640	4698	4756	4814	4872	4930	4988	5046	5104	5162
90	5220	5278	5336	5394	5452	5510	5568	5626	5684	5742

13	0	1	2	3	4	5	6	7	8	9
30	9109	9119	9129	9140	9151	9161	9172	9182	9193	9204
25	9214	9225	9236	9246	9257	9268	9279	9290	9301	9312
35	9322	9333	9344	9355	9367	9378	9389	9400	9411	9422
40	9433	9445	9456	9467	9479	9490	9501	9513	9524	9536
45	9547	9559	9570	9582	9593	9605	9617	9629	9640	9652
50	9664	9676	9688	9700	9711	9723	9735	9747	9760	9772
40	9784	9796	9808	9820	9833	9845	9857	9870	9882	9895
25	907	920	932	945	957	970	983	995	8	21
30	1003	47	60	72	85	99	112	125	138	151
35	164	177	191	204	218	231	244	258	271	285
40	299	312	326	340	354	367	381	395	409	423
50	437	451	466	480	494	508	523	537	551	566
850	1058	595	0610	624	639	654	669	684	698	713
25	728	744	0759	774	789	804	820	835	850	866
35	882	897	913	929	0944	960	976	992	1008	1024
45	1040	1056	1073	1089	1105	1122	1138	1155	1171	1188
40	1205	1222	1238	1255	1272	1289	1306	1324	1341	1358
50	1376	1393	1411	1428	1446	1464	1482	1499	1517	1535
60	1155	1572	1590	1608	1627	1645	1664	1683	1701	1720
25	1739	1758	1777	1796	1815	1835	1854	1874	1893	1913

Вариант 13

Вариант 14

55	10	9	8	7	6	5	4	3	2	1
70	12806	2830	2855	2879	2904	2929	2954	2979	3004	3029
25	3055	3080	3106	3132	3158	3185	3211	3238	3264	3291
35	3318	3346	3373	3401	3429	2456	3485	3513	3541	3570
45	3599	3628	3657	3687	3717	3746	3777	3807	3837	3868
11	3899	3930	3962	3993	4025	4057	4089	4122	4155	4188
22	4221	4255	4289	4323	4357	4392	4427	4462	4497	4533
80	1456	4606	4642	4679	4717	4754	4792	4830	4869	4908
25	4947	4987	5027	5067	5108	5149	5191	5233	5275	5318
35	5362	5405	5449	5494	5539	5584	5630	5677	5724	5771
45	5819	5868	5917	5967	6017	6068	6119	6171	6224	6277
22	6331	6386	6441	6497	6554	6611	6670	6729	6789	6850
33	6911	6974	7037	7101	7167	7233	7300	7369	7438	7509
90	17581	7654	7728	7804	7880	7959	8038	8120	8202	8287
15	8373	7460	8580	8641	8735	8830	8928	9028	9130	9235
25	1934	9452	9565	9681	9800	9922	48	177	311	449
35	2059	739	891	1049	1213	1383	1561	1745	1938	2140
45	2352	2575	2810	3058	3322	3602	3901	4223	4571	4949
55	5363	5820	6332	6912	7581	8373	9342	30592	32352	3536
45	5819	5868	5917	5967	6017	6068	6119	6171	6224	6277
55	2348	2369	2391	2413	2435	2458	2480	2503	2525	2548

75	0	1	2	3	4	5	6	7	8	9
0	17	63	126	189	252	315	378	441	504	567
10	630	693	756	819	882	945	1008	1071	1134	1197
20	1260	1323	1386	1449	1512	1575	1638	1701	1764	1827
30	1890	1953	2016	2079	2142	2205	2268	2331	2394	2457
40	2520	2583	2646	2709	2772	2835	2898	2961	3024	3087
50	3150	3213	3276	3339	3402	3465	3528	3591	3654	3717
60	3780	3843	3906	3969	4032	4095	4158	4221	4284	4347
70	4410	4473	4536	4599	4662	4725	4788	4851	4914	4977
80	5040	5103	5166	5229	5292	5355	5418	5481	5544	5607
90	5670	5733	5796	5859	5922	5985	6048	6111	6174	6237
0	240	64	128	192	256	320	384	448	512	576
10	640	704	768	832	896	960	1024	1088	1152	1216
20	1280	1344	1408	1472	1536	1600	1664	1728	1792	1856
30	1920	1984	2048	2112	2176	2240	2304	2368	2432	2496
40	2560	2642	2688	2752	2816	2880	2944	3008	3072	3136
50	3200	3264	3328	3392	3456	3520	3584	3648	3712	3776
60	3840	3904	3968	4032	4096	4160	4224	4288	4352	4416
70	4480	4544	4608	4672	4736	4800	4864	4928	4992	5056
80	5120	5184	5248	5312	5376	5440	5504	5568	5632	5696
90	5760	5824	5888	5952	6016	6080	6144	6208	6272	6336

Вариант 15

Вариант 16

5	0	1	2	3	4	5	6	7	8	9
0	27	65	130	195	260	325	390	455	520	585
10	650	715	780	845	910	975	1040	1105	1170	1235
20	1300	1365	1430	1495	1560	1625	1690	1755	1820	1885
30	1950	2015	2080	2145	2210	2275	2340	2405	2470	2535
40	2600	2665	2730	2795	2860	2925	2990	3055	3120	3185
50	3250	3315	3380	3445	3510	3575	3640	3705	3770	3835
60	3900	3965	4030	4095	4160	4225	4290	4355	4420	4485
70	4550	4615	4680	4745	4810	4875	4940	5005	5070	5135
80	5200	5265	5330	5395	5460	5525	5590	5655	5720	5785
90	5850	5915	5980	6045	6110	6175	6240	6305	6370	6435
0	820	66	132	198	264	330	396	462	528	594
10	660	726	792	858	924	990	1056	1122	1188	1254
20	1320	1386	1452	1518	1584	1650	1716	1782	1848	1914
30	1980	2046	2112	2178	2244	2310	2376	2442	2508	2574
40	2640	2706	2772	2838	2904	2970	3036	3102	3168	3234
50	3300	3366	3432	3498	3564	3630	3696	3762	3828	3894
60	3960	4026	4092	4158	4224	4290	4356	4422	4488	4554
70	4620	4686	4752	4818	4884	4950	5016	5082	5148	5214
80	5280	5346	5412	5478	5544	5610	5676	5742	5808	5874
90	5940	6006	6072	6138	6204	6270	6336	6402	6468	6534

77	0	1	2	3	4	5	6	7	8	9
0	19	71	142	213	284	355	426	497	568	639
10	710	781	852	923	994	1065	1136	1207	1278	1349
20	1420	1491	1562	1633	1704	1775	1846	1917	1988	2059
30	2130	2201	2272	2343	2414	2485	2556	2627	2698	2769
40	2840	2911	2982	3053	3124	3195	3266	3337	3408	3479
50	3550	3621	3692	3763	3834	3905	3976	4047	4118	4189
60	4260	4331	4402	4473	4544	4615	4686	4757	4828	4899
70	4970	5041	5112	5183	5254	5325	5396	5467	5538	5609
80	5680	5751	5822	5893	5964	6035	6106	6177	6248	6319
90	6390	6461	6532	6603	6674	6745	6816	6887	6958	7029
0	130	72	144	216	288	360	432	504	576	648
10	720	792	864	936	1008	1080	1152	1224	1296	1368
20	1440	1512	1584	1656	1728	1800	1872	1944	2016	2088
30	2160	2232	2304	2376	2448	2520	2592	2664	2736	2808
40	2880	2952	3024	3096	3168	3240	3312	3384	3456	3528
50	3600	3672	3744	3816	3888	3960	4032	4104	4176	4248
60	4320	4392	4464	4536	4608	4680	4752	4824	4896	4968
70	5040	5112	5184	5256	5328	5400	5472	5544	5616	5688
80	5760	5832	5904	5976	6048	6120	6192	6264	6336	6408
90	6480	6552	6624	6696	6768	6840	6912	6984	7056	7128

Вариант 17

Вариант 18

3	0	1	2	3	4	5	6	7	8	9
0	27	73	146	219	292	365	438	511	584	657
10	730	803	876	949	1022	1095	1168	1241	1314	1387
20	1460	1533	1606	1679	1752	1825	1898	1971	2044	2117
30	2190	2263	2336	2409	2482	2555	2628	2701	2774	2847
40	2920	2993	3066	3139	3212	3285	3358	3431	3504	3577
50	3650	3723	3796	3869	3942	4015	4088	4161	4234	4307
60	4380	4453	4526	4599	4672	4745	4818	4891	4964	5037
70	5110	5183	5256	5329	5402	5475	5548	5621	5694	5767
80	5840	5913	5986	6059	6132	6205	6278	6351	6424	6497
90	6570	6643	6716	6789	6862	6935	7008	7081	7154	7227
0	56	74	148	222	296	370	444	518	592	666
10	740	814	888	962	1036	1110	1184	1258	1332	1406
20	1480	1554	1628	1702	1776	1850	1924	1998	2072	2146
30	2220	2294	2368	2442	2516	2590	2664	2738	2812	2886
40	2960	3034	3108	3182	3256	3330	3404	3478	3552	3626
50	3700	3774	3848	3922	3996	4070	4144	4218	4292	4366
60	4440	4514	4588	4662	4736	4810	4884	4958	5032	5106
70	5180	5254	5328	5402	5476	5550	5624	5698	5772	5846
80	5920	5994	6068	6142	6216	6290	6364	6438	6512	6586
90	6660	6734	6808	6882	6956	7030	7104	7178	7252	7326

3	0	1	2	3	4	5	6	7	8	9
710	1089	902	912	923	933	943	954	964	974	984
10	1995	1005	1015	1025	1035	1045	1055	1066	1076	1086
20	1096	1106	1116	1125	1135	1145	1155	1165	1175	1185
30	1194	1204	1214	1223	1233	1243	1252	1262	1272	1281
40	1291	1300	1310	1319	1329	1338	1348	1357	1367	1376
50	1385	1395	1404	1413	1423	1432	1441	1450	1460	1469
80	1147	1487	1496	1505	1515	1524	1533	1542	1551	1560
10	1569	1578	1587	1596	1605	1613	1622	1631	1640	1649
20	1658	1667	1675	1684	1693	1702	1710	1719	1728	1736
30	1745	1754	1762	1771	1779	1788	1797	1805	1814	1822
40	1831	1839	1848	1856	1864	1873	1881	1890	1898	1906
50	1915	1923	1931	1940	1948	1956	1964	1973	1981	1989
90	1997	2005	2013	2022	2030	2038	2046	2054	2062	2070
10	2078	2086	2094	2102	2110	2118	2126	2134	2134	2142
20	2158	2166	2174	2181	2189	2197	2205	2213	2221	2228
30	2236	2244	2252	2259	2267	2275	2282	2290	2298	2305
40	2313	2321	2328	2336	2343	2351	2359	2366	2374	2381
50	2389	2396	2404	2411	2419	2426	2434	2441	2448	2456
60	1246	2471	2478	2485	2493	2500	2507	2515	2522	2529
35	1933	1952	1972	1992	2012	2033	2053	2073	2094	2114

Вариант 19

Вариант 20

2	10	9	8	7	6	5	4	3	2	1
110	1287	2893	2900	2907	2913	2920	2927	2934	2940	2947
10	2953	2960	2967	2973	2980	2987	2993	3000	3006	3013
20	3020	3026	3033	3039	3046	3052	3059	3065	3072	3078
30	3085	3091	3098	3104	3110	3117	3123	3130	3136	3142
40	3149	3155	3162	3168	3174	3181	3187	3193	3200	3206
50	3212	3219	3225	3231	3237	3244	3250	3256	3262	3269
120	1325	3281	3287	3293	3300	3306	3312	3318	3324	3330
10	3336	3343	3349	3355	3361	3367	3373	3379	3385	3391
20	3397	3403	3409	3416	3422	3428	3434	3440	3446	3452
30	3458	3464	3469	3475	3481	3487	3493	3499	3505	3511
40	3517	3528	3529	3535	3541	3546	3552	3558	3564	3570
50	3576	3581	3587	3593	3599	3605	3611	3616	3622	3628
130	1363	3639	3645	3651	3657	3662	3668	3674	3680	3685
10	3691	3697	3702	3708	3714	3719	3725	3731	3736	3742
20	3748	3758	3759	3764	3770	3776	3781	3787	3792	3798
30	3804	3809	3815	3820	3826	3831	3837	3842	3848	3853
40	3859	3864	3870	3875	3881	3886	3892	3897	3903	3908
50	3914	3919	3924	3930	3935	3941	3946	3952	3957	3962
20	3397	3403	3409	3416	3422	3428	3434	3440	3446	3452
45	2135	2156	2177	2198	2219	2240	2261	2283	2304	2326

8	0	1	2	3	4	5	6	7	8	9
0	54	79	158	237	316	395	474	553	632	711
10	790	869	948	1027	1106	1185	1264	1343	1422	1501
20	1580	1659	1738	1817	1896	1975	2054	2133	2212	2291
30	2370	2449	2528	2607	2686	2765	2844	2923	3002	3081
40	3160	3239	3318	3397	3476	3555	3634	3713	3792	3871
50	3950	4029	4108	4187	4266	4345	4424	4503	4582	4661
60	4740	4819	4898	4977	5056	5135	5214	5293	5372	5451
70	5530	5609	5688	5767	5846	5925	6004	6083	6162	6241
80	6320	6399	6478	6557	6636	6715	6794	6873	6952	7031
90	7110	7189	7268	7347	7426	7505	7584	7663	7742	7821
0	20	80	160	240	320	400	480	560	640	720
10	800	880	960	1040	1120	1200	1280	1360	1440	1520
20	1600	1680	1760	1840	1920	2000	2080	2160	2240	2320
30	2400	2480	2560	2640	2720	2800	2880	2960	3040	3120
40	3200	3280	3360	3440	3520	3600	3680	3760	3840	3920
50	4000	4080	4160	4240	4320	4400	4480	4560	4640	4720
60	4800	4880	4960	5040	5120	5200	5280	5360	5440	5520
70	5600	5680	5760	5840	5920	6000	6080	6160	6240	6320
80	6400	6480	6560	6640	6720	6800	6880	6960	7040	7120
90	7200	7280	7360	7440	7520	7600	7680	7760	7840	7920

Вариант 21

Вариант 22

12	0	1	2	3	4	5	6	7	8	9
0	0	81	162	243	324	405	486	567	648	729
10	810	891	972	1053	1134	1215	1296	1377	1458	1539
20	1620	1701	1782	1863	1944	2025	2106	2187	2268	2349
30	2430	2511	2592	2673	2754	2835	2916	2997	3078	3159
40	3240	3321	3402	3483	3564	3645	3726	3807	3888	3969
50	4050	4131	4212	4293	4374	4455	4536	4617	4698	4779
60	4860	4941	5022	5103	5184	5265	5346	5427	5508	5589
70	5670	5751	5832	5913	5994	6075	6156	6237	6318	6399
80	6480	6561	6642	6723	6804	6885	6966	7047	7128	7209
- 90	7290	7371	7452	7533	7614	7695	7776	7857	7938	8019
0	13	82	164	246	328	410	492	574	656	738
10	820	902	984	1066	1148	1230	1312	1394	1476	1558
20	1640	1722	1804	1886	1968	2050	2132	2214	2296	2378
30	2460	2542	2624	2706	2788	2870	2952	3034	3116	3198
40	3280	3362	3444	3526	3608	3690	3772	3854	3936	4018
50	4100	4182	4264	4346	4428	4510	4592	4674	4756	4838
60	4920	5002	5084	5166	5248	5330	5412	5494	5576	5658
70	5740	5822	5904	5986	6068	6150	6232	6314	6396	6478
80	6560	6642	6724	6806	6888	6970	7052	7134	7216	7298
90	7380	7462	7544	7626	7708	7790	7872	7954	8036	8118

79	0	6	12	18	24	30	36	42	48	54
1	2	3	4	5	6	7	7	8	956	56
0	5	17	35	52	70	87	105	122	140	157
1	17	192	209	227	244	0262	279	297	314	332
2	349	366	384	401	419	0436	454	471	488	506
3	523	541	558	576	593	0610	628	645	663	680
4	698	715	732	750	767	785	802	819	837	854
5	872	889	906	924	941	958	976	993	1011	1028
6	1045	1063	1080	1097	1115	1132	1149	1167	1184	1201
7	1219	1236	1253	1271	1288	1305	1323	1340	1357	1374
8	1392	1409	1426	1444	1461	1478	1495	1513	1530	1547
9	1564	1582	1599	1616	1633	1650	1668	1685	1702	1719
10	1736	1754	1771	1788	1805	1822	1840	1857	1874	1891
11	1908	1925	1942	1959	1977	1994	2011	2028	2045	2062
12	2079	2096	2113	2130	2147	2164	2181	2198	2215	2233
13	2250	2267	2284	2300	2317	2334	2351	2368	2385	2402
14	2419	2436	2453	2470	2487	2504	2521	2538	2554	2571
15	2588	2605	2622	2639	2656	2672	2689	2706	2723	2740
16	2756	2773	2790	2807	2823	2840	2857	2874	2890	2907
17	2924	2940	2957	2974	2990	3007	3024	3040	3057	3074
18	3090	3107	3123	3140	3156	3173	3190	3206	3223	3239

Вариант 23

Вариант 24

2	0	6	12	18	24	30	36	42	48	54
20	3420	3437	3453	3469	3486	3502	3518	3535	3551	3567
21	3584	3600	3616	3633	3649	3665	3681	3697	3714	3730
22	3746	3762	3778	3795	3811	3827	3843	3859	3875	3891
23	3907	3923	3939	3955	3971	3987	4003	4019	4035	4051
24	4067	4083	4099	4115	4131	4147	4163	4179	4195	4210
25	4226	4242	4258	4274	4289	4305	4321	4337	4352	4368
26	4384	4399	4415	4431	4446	4462	4478	4493	4509	4524
27	4540	4555	4571	4586	4602	4617	4633	4648	4664	4679
28	4695	4710	4726	4741	4756	4772	4787	4802	4818	4833
29	4848	4863	4879	4894	4909	4924	4939	4955	4970	4985
30	5000	5015	5030	5045	5060	5075	5090	5105	5120	5135
31	5150	5165	5180	5195	5210	5225	5240	5255	5270	5284
32	5299	5314	5329	5344	5358	5373	5388	5402	5417	5432
33	5446	5461	5476	5490	5505	5519	5534	5548	5563	5577
34	5592	5606	5621	5635	5650	5664	5678	5693	5707	5721
33	3907	3923	3939	3955	3971	3987	4003	4019	4035	4051
45	4226	4242	4258	4274	4289	4305	4321	4337	4352	4368
57	4540	4555	4571	4586	4602	4617	4633	4648	4664	4679
58	3256	3272	3289	3305	3322	3338	3355	3371	3387	3404
59	3090	3107	3123	3140	3156	3173	3190	3206	3223	3239

0	4	3	4	5	6	7	8	9	2	1
3142	13	3236	3267	3299	3330	3362	3393	3424	3	3173
3456	13	3550	3581	3613	3644	3676	3707	3738	3	3487
3770	13	3864	3896	3927	3958	3990	4021	4053	3	3801
4084	13	4178	4210	441	4273	4304	4335	4367	3	4115
4398	13	4492	4524	4555	4587	4618	4650	4681	3	4430
4712	13	4807	4838	4869	4901	4932	4964	4995	3	4744
5027	13	5121	5152	5184	5215	5246	5278	5309	3	5058
5341	13	5435	5466	5498	5529	5561	5592	5623	3	5372
5655	13	5749	5781	5812	5843	5875	5906	5938	3	5686
5969	13	6063	6095	6126	6158	6189	6220	6252	3	6000
6283	13	6377	6409	6440	6472	6503	6535	6566	3	6315
6597	13	6692	6723	6754	6786	6817	6849	6880	3	6629
6918	13	7006	7037	7069	7100	7131	7163	7194	3	6943
7226	13	7320	7351	7383	7414	7446	7477	7508	3	7257
7540	13	7634	7665	7697	7728	7760	7791	7823	3	7571
7854	13	7948	7980	8011	8042	8074	8105	8137	3	7885
8168	13	8262	8294	8325	8357	8388	8419	8451	3	8200
8482	13	8577	8608	8639	8671	8702	8734	8765	3	8514
8796	13	8891	8922	8954	8985	9016	9048	9079	3	8828
9111	13	9205	9236	9268	9299	9331	9362	9393	3	9142

Вариант 25

Вариант 26

7	0	1	2	3	4	5	6	7	8	9
30	9425	9456	9488	9519	9550	9582	9613	9645	9676	9708
31	9739	9770	9802	9833	9865	9896	9927	9959	9990	10022
32	10053	10085	10116	10147	10179	10210	10242	10273	10304	10336
33	10367	10399	10430	10462	10493	10524	10556	10587	10619	10650
34	10681	10713	10744	10776	10807	10838	10870	10901	10933	10964
35	10996	11027	11058	11090	11121	11153	11184	11215	11247	11278
36	11310	11341	11373	11404	11435	11467	11498	11530	11561	11592
35	11624	11655	11687	11718	11750	11781	11812	11844	11875	11907
38	11938	11969	12011	12032	12064	13095	12127	12158	12189	12221
39	12252	12284	12315	12346	12378	12409	12441	12472	12504	12535
40	12566	12598	12629	12661	12692	12723	12755	12786	12818	12849
41	12881	12912	12943	12975	13006	13038	13069	13100	13132	13163
42	13195	13226	13258	13289	13320	13352	13383	13415	13446	13477
43	13509	13540	13572	13603	13635	13666	13697	13729	13760	13792
44	13823	13854	13886	13917	13949	13980	14012	14043	14074	14106
54	10681	10713	10744	10776	10807	10838	10870	10901	10933	10964
66	11310	11341	11373	11404	11435	11467	11498	11530	11561	11592
79	12252	12284	12315	12346	12378	12409	12441	12472	12504	12535
81	9739	9770	9802	9833	9865	9896	9927	9959	9990	10022
27	4540	4555	4571	4586	4602	4617	4633	4648	4664	4679

22	234	456	567	11	111	888	564	9	123	876
20	5	10	30	40	3894	9211	4228	80	7174	6967
1	10	20	100	41	3986	9171	4346	81	7243	6895
2	205	9998	200	42	4078	9131	4466	82	7311	6822
3	306	9996	300	43	4169	9090	4586	83	7379	6749
4	407	9992	400	44	4259	9048	4708	84	7446	6675
5	508	9988	500	45	4350	9004	4831	85	7513	6600
6	609	9982	601	46	4439	8961	4954	86	7578	6524
7	699	9976	701	47	4529	8916	5080	87	7643	6448
8	799	9968	802	48	4618	8870	5206	88	7707	6372
9	899	9960	902	49	4706	8823	5334	89	7771	6294
10	998	9950	1003	50	4794	08776	5463	90	7833	06216
11	1098	9940	1105	51	4882	8727	5594	91	7895	6137
12	1197	9928	1206	52	4969	8678	5726	92	7956	6058
3	1296	9916	1307	53	5055	8628	5859	93	8016	5978
14	1395	9902	1409	54	5141	8577	5994	94	8076	5898
15	1494	9888	1511	55	5227	8525	6131	95	8134	5817
16	1593	9872	1614	56	5312	8473	6269	96	8192	5735
17	1692	9856	1717	37	5396	8419	6410	97	8249	5653
18	1790	9838	1820	58	5480	8365	6552	98	8305	5570
19	1889	9820	1923	59	5564	8309	6696	99	8360	5487

Вариант 27

Вариант 28

7	543	786	432	4	987	767	323	223	211	666
20	1987	9801	02027	60	5646	8253	6841	8415	5403	15574
21	2085	9780	2131	61	5729	8196	6989	8468	5319	5922
22	2182	9759	2236	62	5810	8139	7139	8521	5234	6281
23	2280	9737	2341	63	5891	8080	7291	8573	5148	6652
24	2377	9713	2447	64	5972	8021	7445	8624	5062	7039
25	2474	9689	2553	65	6052	7961	7602	8674	4976	7433
26	2571	9664	2660	66	6131	7900	7761	8724	4889	7844
27	2667	9638	2768	67	6210	7838	7923	8772	4801	8270
28	2764	9611	2875	68	6288	7776	8087	8820	4713	8712
29	2860	9582	2984	69	6365	7712	8253	8866	4625	9171
30	2955	9553	3093	70	06442	7648	8423	8912	4536	19648
31	3051	9523	3203	71	6518	7584	8595	8957	4447	20143
32	3146	9492	3314	72	6594	7518	8771	9001	4357	0660
33	3240	9460	3425	73	6669	7452	8949	9044	4267	1198
34	3335	9428	3537	74	6743	7385	9131	9086	4176	1759
35	3429	9394	3650	75	6816	7317	9316	9128	4085	2345
36	3523	9359	3764	76	6889	7248	9505	9168	3993	2958
37	3616	9323	3879	77	6961	7179	9697	9208	3902	3600
38	3709	9287	3994	78	7033	7109	09883	9246	3809	4273
39	3802	9249	4111	79	7104	7038	10092	9284	3717	4979

1	0	6	12	18	24	30	36	42	48	54
40	08391	8421	8451	8481	8511	8541	8571	8601	8632	8662
41	8693	8724	8754	8785	8816	8847	8878	8910	8941	8972
42	9004	9036	9067	9099	9131	9163	9195	9228	9260	9293
43	9325	9358	9391	9424	9457	9490	9523	9556	9590	9623
44	9657	9691	9725	9759	9793	9827	9861	9896	9930	9965
45	1000	35	70	105	141	176	212	247	283	319
46	355	392	428	464	501	538	575	612	649	686
47	724	761	799	837	875	913	951	990	1028	1067
48	1106	1145	1184	1224	1263	1303	1343	1383	1423	1463
49	1504	1544	1585	1626	1667	1708	1750	1792	1833	1875
50	11918	1960	2002	2045	2088	2131	2174	2218	2261	2305
51	2349	2393	2437	2482	2527	2572	2617	2662	2708	2753
52	2799	2846	2892	2938	2985	3032	3079	3127	3175	3222
53	3270	3319	3367	3416	3465	3514	3564	3613	3663	3713
54	3764	3814	3865	3916	3968	4019	4071	4124	4176	4229
55	14281	4335	4388	4442	4496	4550	4605	4659	4715	4770
56	4826	4882	4938	4994	5051	5108	5166	5224	5282	5340
57	5399	5458	5517	5577	5637	5697	5757	5818	5880	5941
58	6003	6066	6128	6191	6255	6319	6383	6447	6512	6577
15	1494	9888	1511	55	5227	8525	6131	95	8134	5817

Вариант 29

Вариант 30

33	60	54	48	42	36	30	24	18	12	6
60	1732	1739	1746	1753	1760	1767	1775	1782	1789	1797
61	1804	1811	1819	1827	1834	1842	1849	1857	1865	1873
62	1881	1889	1897	1905	1913	1921	1929	1937	1946	1954
63	1963	1971	1980	1988	1997	2006	2014	2023	2032	2041
64	2050	2059	2069	2078	2087	2097	2106	2116	2125	2135
65	2145	2154	2164	2174	2184	2194	2204	2215	2225	2236
66	2246	2257	2267	2278	2289	2300	2611	2322	2333	2344
67	2356	2367	2379	2391	2402	2414	2426	2438	2450	2463
68	2475	2488	2500	2513	2526	2539	2552	2565	2578	2592
69	2605	2619	2633	2646	2660	2675	2689	2703	2718	2733
70	2747	2762	2778	2793	2808	2824	2840	2856	2872	2888
71	2904	2921	2937	2954	2971	2989	3006	3024	3042	3060
72	3078	3096	3115	3133	3152	3172	3191	3211	3230	3251
73	3271	3291	3312	3333	3354	3376	6878	7765	8432	9111
71	1311	3222	4333	4544	5655	5666	3398	3420	3442	3465
74	3487	3511	3534	3558	3582	3606	6666	4343	2323	1212
96	1234	2345	4567	5432	2323	2222	3630	3655	3681	3706
75	3732	3758	3785	3812	3839	3867	2222	3333	4444	5555
65	7777	4444	3232	7878	5455	5667	3895	3923	3952	3981
86	1881	1889	1897	1905	1913	1921	1929	1937	1946	1954

ПРИЛОЖЕНИЕ В (обязательное)

Вариант	Частота f, кГц	Длительность импульса Δ , с
1	120	0,070
2	130	0,065
3	140	0,060
4	150	0,055
5	160	0,050
6	170	0,045
7	180	0,040
8	190	0,035
9	200	0,033
10	210	0,032
11	220	0,031
12	230	0,030
13	240	0,029
14	250	0,028
15	260	0,027
16	270	0,026
17	280	0,025
18	290	0,024
19	300	0,023
20	310	0,022
21	320	0,021
22	330	0,020
23	340	0,019
24	350	0,018
25	360	0,017
26	370	0,016
27	380	0,015
28	390	0,014
29	400	0,013
30	410	0,012

Частота и длительность исследуемых сигналов
ПРИЛОЖЕНИЕ Г (обязательное)

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЁТА ПРЕДЕЛЬНОЙ МОЩНОСТИ СИГНАЛА, ПЕРЕДАВАЕМОГО ПО КАНАЛУ С ЗАДАННЫМИ ПАРАМЕТРАМИ

Вариант	Параметр			
	<i>F</i> _к , кГц	Тк, с	<i>N</i> , мВт/Гц	Vĸ
1	10	10	1.10-4	$3 \cdot 10^{5}$
2	12	9	1.10-5	105
3	14	8	1.10-4	$2 \cdot 10^{5}$
4	16	7	1.10-5	104
5	18	6	$1 \cdot 10^{-3}$	$7 \cdot 10^{4}$
6	20	5	10,5.10-4	$8 \cdot 10^{4}$
7	19	4	$10, 7 \cdot 10^{-4}$	9.10^{4}
8	17	3	10,9.10-4	104
9	15	2	12.10-4	$4 \cdot 10^{5}$
10	13	1	7·10 ⁻⁵	$5 \cdot 10^{4}$
11	11	2	9·10 ⁻⁵	$3 \cdot 10^{5}$
12	9	3	8·10 ⁻⁵	$7 \cdot 10^{4}$
13	7	4	6·10 ⁻⁵	$8 \cdot 10^{4}$
14	5	5	5·10 ⁻⁵	9·10 ⁴
15	3	6	4.10-5	2.10^{4}
16	4	7	3.10-5	7.10^{4}
17	6	8	2.10-5	105
18	8	9	$1 \cdot 10^{-5}$	$4 \cdot 10^{5}$
19	8,5	10	4.10-3	$5 \cdot 10^{5}$
20	9,5	11	5·10 ⁻³	$6 \cdot 10^{5}$
21	11,5	12	6·10 ⁻³	$7 \cdot 10^{5}$
22	13,5	13	7·10 ⁻³	$8 \cdot 10^{5}$
23	15,5	14	8·10 ⁻³	$5 \cdot 10^{5}$
24	17,5	15	9·10 ⁻⁴	$4 \cdot 10^{5}$
25	19,5	16	3.10-4	$2 \cdot 10^{5}$
26	11	1,5	$1,5 \cdot 10^{-4}$	9·10 ⁵
27	13	2,5	$2,5 \cdot 10^{-4}$	$8 \cdot 10^{5}$
28	15	3,5	1,5.10-5	$7 \cdot 10^{5}$
29	17	4,5	2,5.10-5	$6 \cdot 10^{5}$
30	19	5,5	4,5.10-5	$5 \cdot 10^{5}$

Учебное издание

БУРЧЕНКОВ Валерий Васильевич ХОЛОДИЛОВ Олег Викторович

ПРЕОБРАЗУЮЩИЕ И ФУНКЦИОНАЛЬНЫЕ Элементы телеметрических систем

Учебно-методическое пособие

Редактор И. И. Эвентов Технический редактор В. Н. Кучерова

Подписано в печать 20.03.2015 г. Формат 60х84/16. Бумага офсетная. Гарнитура Times. Печать на ризографе. Усл. печ. л. 8,14. Уч.-изд. л. 8,87. Тираж 100 экз. Зак. № . Изд. № 54.

Издатель и полиграфическое исполнение: Белорусский государственный университет транспорта. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/361 от 13.06.2014. № 2/104 от 01.04.2014. Ул. Кирова, 34, 246653, Гомель