снижаются. Это может привести к воспламенению изоляции токоведущих частей в результате короткого замыкания.

Таким образом, в сельскохозяйственной технике, как и в автомобиле, возможно возникновение нескольких аварийных режимов работы электрооборудования: короткое замыкание, устойчивое перенапряжение вследствие механических нарушений в работе регулирующих аппаратов, кратковременное перенапряжение, возникающее при коммутации мощных электрифицированных механизмов и аппаратов, например, установка мощных нештатных аудиосистем, длительное коррозионное воздействие на электрические контакты и электронные системы.

Система выпуска отработавших газов также представляет собой определенную пожарную опасность, так как она подвержена воздействию высоких температур газов, образующихся в цилиндрах двигателя при сгорании топливовоздушной смеси. При попадании топлива на выпускной коллектор происходит образование пожаровзрывоопасной горючей смеси в подкапотном пространстве.

Огромную пожарную опасность создают искры, представляющие собой горящие частицы, выбрасываемые с отработавшими газами. Причиной образования искр в двигателях внутреннего сгорания тракторов и комбайнов является нагар, который образуется на стенках системы выпуска отработавших газов при сгорании дизельного топлива и моторного масла. При сгорании 100 кг дизельного топлива образуется 150 г. нагара. Сгорание моторного масла, попавшего в цилиндры двигателя, дает значительно больше нагара за счет присутствия в масле металлической и минеральной пыли. Данная проблема усугубляется отсутствием или низкой эффективностью искрогасителей, применяемых на сельскохозяйственной технике в Республике Беларусь.

Таким образом, основными путями снижения количества пожаров на сельскохозяйственной технике является предотвращение образования потенциальных источников зажигания в системах питания, смазки, выпуска отработавших газов и электрооборудования, а также строгое соблюдение технологического регламента обслуживания сельхозмашин и правил пожарной безопасности.

УДК 614.841.2.001.5

НЕИСПРАВНОСТИ СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ КАК ПРИЧИНА ВОЗНИКНОВЕНИЯ ПОЖАРА НА САМОХОДНОЙ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКЕ

В. Н. ПАСОВЕЦ, В. А. КОВТУН

Университет гражданской защиты МЧС Беларуси, г. Минск

Электрическая энергия, используемая для пуска двигателя, а также для приведения в действие контрольно-измерительных приборов сельскохозяйственной техники [1, 2], может являться источником зажигания [3]. В качестве источников электрического тока на сельскохозяйственной технике используются электрические аккумуляторы и генератор. Электрическая система является одной из самых пожароопасных систем трактора или комбайна [4]. Факторами, влияющими на работу электрических систем сельскохозяйственной техники, являются: высокие температуры поверхностей двигателя, высокий уровень теплового излучения от двигателя, наличие топливопроводов, расположенных в непосредственной близости, при повреждении которых электросистема становится потенциальным источником зажигания. Также вода, пыль и грязь вызывают коррозию в местах электрических контактов, увеличивая при этом электрическое сопротивление и вызывая местные перегревы, оплавления и горение изоляции.

Необходимо отметить, что короткое замыкание является наиболее распространенным аварийным режимом работы электрооборудования, приводящим к пожару. При достижении критических значений температур в электроборудовании возможно воспламенение изоляции и находящихся вблизи горючих конструкционных материалов. Если же температура не достигает критической, но достаточно высока, то увеличивается скорость старения изоляции провода, а ее эксплуатационное состояние и долговечность снижаются. Это может привести к короткому замыканию и воспламенению изоляции токоведущих частей.

Таким образом, в сельскохозяйственной технике, как и в автомобиле, возможно возникновение нескольких аварийных режимов работы электрооборудования: короткое замыкание, устойчивое перенапряжение вследствие механических нарушений в работе регулирующих аппаратов, кратковременное перенапряжение, возникающее при коммутации мощных электрифицированных меха-

низмов и аппаратов, например, установка мощных нештатных аудиосистем, длительное коррозионное воздействие на электрические контакты и электронные системы. В качестве примера уничтожения сельскохозяйственной техники пожаром, образовавшимся из-за неисправности электрической системы, можно привести возгорание комбайна «КВК-800», находящегося на сельскохозяйственном поле вблизи д. Болотня Рогачевского района.

В результате проведенных исследований было установлено, что очаг пожара находился во внутреннем объеме моторного отсека комбайна. Технической причиной возникновения пожара явился аварийный режим работы электрической сети — короткое замыкание на электрических проводниках, что подтверждается микроструктурными исследованиями (см. рисунок 1) изъятых медных проводников. Так, исследование оплавления первого проводника (рисунок 1, a) показало, что массовая доля кислорода в сплаве находится в пределах от 0,05 до 0,39 %. В микроструктуре по границам зерен наблюдается тонкая прослойка эвтектики, по краям образца присутствует эвтектика $Cu - Cu_2O$ и первичные кристаллы закиси меди, газовые раковины и поры отсутствуют, что является дифференцирующим признаком первичного короткого замыкания [5, 6].

Микроструктурные исследования второго образца показали (см. рисунок 1, *б*), что структура меди в зоне оплавления имеет многочисленные газовые раковины и поры, образованные в результате интенсивного взаимодействия меди с газообразными продуктами среды, формирующейся при пожаре (водород, окись углерода, водяной пар и т. д.), что является дифференцирующим признаком вторичного короткого замыкания [7, 8].

Основанием для данных выводов явилось следующее. Для изготовления медных проводников применяется медь марки М1, в которой содержится 0.05–0.06 % кислорода. В исходной проволоке кислород находится в виде сферических частиц закиси меди Cu_2O . При температуре 1100 °C в расплавленной меди может раствориться до 1 % кислорода. Поскольку растворимость кислорода в твердой меди составляет всего 0.01 %, то в литой меди, содержащей более 0.01 % кислорода, на границах между кристаллами меди образуется прослойка эвтектики $Cu - Cu_2O$ [9, 10].

Высокая скорость охлаждения расплавленной части медного проводника при первичном коротком замыкании приводит к тому, что образующиеся в расплаве центры кристаллизации начинают интенсивно расти в направлении максимального отвода тепла, а выделяющаяся в процессе кристаллизации скрытая теплота плавления препятствует росту кристаллов в других направлениях. В результате образуется зона вытянутых кристаллов, получивших название столбчатых дендритов. Дендритная структура является устойчивым дифференцирующим признаком, характеризующим первичное короткое замыкание. Указанный признак сохраняется при последующих высокотемпературных (до 1000 °C) отжигах. При первичном коротком замыкании в атмосфере отсутствуют газы-восстановители и это приводит к тому, что газовые раковины и поры в оплавленном участке не образуются [11].

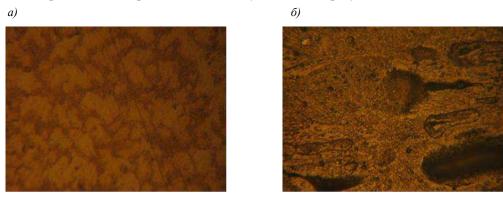


Рисунок 1 – Микроструктура оплавления медных проводников

В случае вторичного короткого замыкания или при коротком замыкании в условиях пожара, характеризующегося пониженным содержанием кислорода, высокой температурой и высоким содержанием газообразных продуктов горения, наблюдается иная микроструктура. Наличие в атмосфере короткого замыкания окиси углерода приводит к исчезновению эвтектики $Cu-Cu_2O$ по границам зерен меди, а присутствие в атмосфере небольшого количества водорода, помимо этого, способствует образованию газовых раковин и пор по границам и внутри тела зерен меди. Сами зерна литой меди имеют округлую форму [7].

Список литературы

- 1 Синельников, А. Х. Электронные приборы для автомобилей / А. Х. Синельников. М.: Электроатомиздат. 1986. 256 с.
- 2 Смелков, Γ . И. Пожарная опасность электропроводок при аварийных режимах / Γ . И. Смелков. М. : Энергоатом-издат, 1984. 133 с.
- 3 **Зернов, С. И.** Пожарно-техническая экспертиза: назначение и использование результатов / С. И. Зернов, О. Ю. Антонов М.: ЮИ МВД РФ, 1997. 298 с.
- 4 Донцов, В. Г. Дознание и экспертиза пожаров. Справочное пособие / В. Г. Донцов, В. И. Путилин. Волгоград : ИНКОМ, 2015. 159 с.
 - 5 Таубкин, С. И. Пожар и взрыв, особенности экспертизы / С. И. Таубкин. М.: ВНИИПО, 1999. 600 с.
- 6 **Мишурин, В. М.** Надежность водителя и безопасность движения / В. М. Мишурин, А. Н. Романов. М. : Транспорт, 1990 167 с.
- 7 **Федотов, А. И.** Пожарно-техническая экспертиза / А. И. Федотов, А. П. Ливчиков, Л. Н. Ульянов. М. : Стройиздат, 1986. 403 с.
- 8 Донцов, В. Г. Дознание и экспертиза пожаров. Справочное пособие / В. Г. Донцов, В. И. Путилин. Волгоград : ИНКОМ, 2015. 159 с.
- 9 **Хрусталев, В. Н.** Участие специалиста-криминалиста в следственных действиях / В. Н. Хрусталев. СПб. : Питер, 2003 208 с
- 10 **Зернов, С. И.** Технико-криминалистическое обеспечение расследования преступлений, сопряженных с пожарами / С. И. Зернов. М. : ЭКЦ МВД России, 1996. 128 с.
 - 11 Криминалистика / под ред. В. А. Образцова. М. : Юристь, 1995. 422 с.

УДК 358.1

ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ БЕСПИЛОТНЫХ АВИАЦИОННЫХ КОМПЛЕКСОВ ПРИ ПРОВЕДЕНИИ ТЕХНИЧЕСКОЙ РАЗВЕДКИ ПОСЛЕДСТВИЙ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ НА ЖЕЛЕЗНОЙ ДОРОГЕ

В. В. ПЕТРУСЕВИЧ

Белорусский государственный университет транспорта, г. Гомель

Сегодня подразделения Транспортных войск являются основным и единственным средством в Министерстве обороны Республики Беларусь для строительства и восстановления железных дорог.

Эффективность применения подразделения Транспортных войск во многом зависит от проведения технической разведки.

Основными задачами технической разведки являются: добывание разведывательных данных об разрушенных железнодорожных объектах, разведка местности вблизи этих объектов, наблюдение за положением и действиями противника и своих войск.

Для решения этих задач техническая разведка на сегодняшний день выполняется военнослужащими Транспортных войск на устаревших образцах техники (рисунок 1).

a) 6)

Рисунок 1 — Техника для проведения технической разведки: a — УАЗ на комбинированном ходу; δ — УРАЛ-4320

Нельзя оставить без внимания и вопрос своевременности доведения разведывательной информации. Как известно, выполнение задач по строительству и восстановлению железнодорожного участка (объекта) напрямую связано со скоростью поступления достоверной информации от подразделений технической разведки.