пределение индекса разрушения (характеристика, связанная с запасом прочности) по различным критериям разрушения применительно к ПКМ. Расчет проведен по критериям Puck, Hashin, LaRC (Langley Research Center). Считается, что разрушение наступает, когда индекс разрушения становится равным единице. Определены продольные растягивающие напряжения и напряжения сдвига в плоскости листа для соответствующих монослоев панели с дефектом эллиптической формы и неповреженной панели (в различные моменты времени). Показано изменение прогиба в монослое с дефектом (поврежденная панель), сотовом заполнителе и в неповрежденной панели в зависимости от времени. Проведен параметрический анализ. Выработаны практические результаты.

УДК 531.383

ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ В ЗАДАЧАХ ГИДРОУПРУГОСТИ СООСНЫХ ОБОЛОЧЕК

О. В. ЕЛИСТРАТОВА

Поволжский институт управления им. П. А. Столыпина — филиал РАНХиГС, г. Саратов, Российская Федерация

Д. В. КОНДРАТОВ

Институт проблем точной механики и управления Российской академии наук (ИПТМУ РАН), г. Саратов,

Саратовский национальный исследовательский государственный университет им. Н. Г. Чернышевского,

Саратовский государственный технический университет им. Ю. А. Гагарина, Российская Федерация

И. В. ПЛАКСИНА, Ю. Н. КОНДРАТОВА

Саратовский национальный исследовательский государственный университет им. Н. Г. Чернышевского, Российская Федерация

В современном транспорте активно применяются различные конструкции, взаимодействующие с вязкой несжимаемой жидкостью. В таких конструкциях изучается проблема конструкционной прочности механических систем, взаимодействующих с вязкой жидкостью при вибрационных нагрузках [1, 2]. Уже разработано значительное число математических моделей, описывающих динамическое поведение механической системы, в которой взаимодействуют упругие тонкостенные конструкции с вязкой жидкостью (рисунок 1).

Рассмотрим механическую систему, состоящую из трех соосных упругих цилиндрических оболочек, свободно опираемых на концах при вибрации или перепаде давления на концах [3]. Пространства между оболочками заполнены вязкими несжимаемыми жидкостями, которые могут быть различными. Внутренняя оболочка является полой [3].

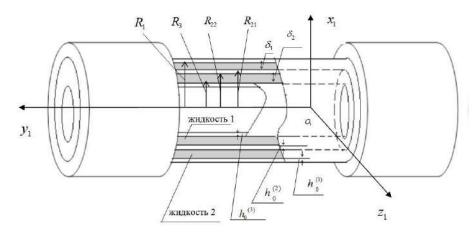


Рисунок 1 – Механическая модель

Математическая модель состоит из связанной системы уравнений динамики оболочек, уравнений динамики вязких несжимаемых жидкостей и соответствующих граничных условий. Задача решается комбинацией аналитических и численных методов, а именно, решение уравнений гидродинамики решается аналитическими методами, а получившиеся в дальнейшем уравнения динамики упругих соосных оболочек – численными. Уравнения динамики вязкой несжимаемой жидкости линеаризуются методом возмущений, а далее решаются аналитически при условии неизвестности прогибов оболочек. Для решения уравнений динамики оболочек применяется метод Бубнова – Галеркина. Даже применение такой комбинации методов оставляют высокую вычислительную сложность решаемой задачи. Так, например, для задачи с перепадом давления на концах механической системы получающаяся после применения метода Бубнова – Галеркина [3, 4] система линейных алгебраических уравнений состоит из 36 уравнений, а если задача с вибрацией, то система из 42 уравнений. Конечно, такие системы уравнений достаточно тяжело решаются аналитически. Поэтому можно решать их с помощью параллельных вычислений [5, 6]. Применение современных языков программирования в значительной степени упрощает распараллеливание. Так, например, язык Python позволяет достаточно хорошо распараллелить вычисления. Кроме того, так как основные аналитические вычисления проводились в Maple, то актуальным вопросом становится применение внутренних инструментов Maple для распараллеливания вычислений.

Предварительные вычислительные эксперименты показали, что применение Python позволяет рассчитать в 1,5–2 раза быстрее, чем Maple. Тестирование производили на одном и том же компьютере без учета времени загрузки программного обеспечения. Однако формирование единого вычислительного комплекса в Maple в значительной степени дает более широкие возможности в дальнейшей применимости модели для научных исследований. Для инженерной практики лучше делать только закрытый комплекс для расчетов с использованием Python или других языков программирования. Исследование математической модели позволяет вычислить прогибы каждой из трех упругих оболочек.

Список литературы

- 1 **Кондратов**, **Д. В.** Гидроупругость силового цилиндра с полым плунжером при свободном истечении жидкости / Д. В. Кондратов // Вестник Саратовского госагроуниверситета им. Н. И. Вавилова. − 2008. № 1. С. 38–43.
- 2 **Вельмисов, П. А.** Математическое моделирование в задачах динамики виброударных и аэроупругих систем / П. А. Вельмисов, В. К. Манжосов. Ульяновск, 2014. 204 с.
- 3 **Елистратова, О. В.** Моделирование динамики трех упругих соосных оболочек свободно опертых на концах, взаимодействующих с двумя пульсирующими слоями жидкости, находящихся между ними при пульсации давления / О. В. Елистратова, Д. В. Кондратов // Математическое моделирование, компьютерный и натурный эксперимент в естественных науках. 2016. № 1. С. 11–15. URL: mathmod.esrae.ru/1-2.
- 4 Hydroelastic oscillations of a circular plate, resting on Winkler foundation / D. V. Kondratov [et al.] // Journal of Physics: Conference Series. -2018.-C.012057.
- 5 **Кондратов**, Д. В. Гидроупругость силового цилиндра с полым плунжером при свободном истечении жидкости / Д. В. Кондратов // Вестник Саратовского госагроуниверситета им. Н. И. Вавилова. 2008. № 1. С. 38–43.
- 6 **Ежова, Н. А.** Обзор моделей параллельных вычислений / Н. А. Ежова, Л. Б. Соколинский // Вестник ЮУрГУ. Серия Вычислительная математика и информатика. 2019. Т. 8, № 3. С. 58–91.
- 7 Основы параллельного программирования с использованием технологий MPI и OpenMP : учеб. пособие / P. B. Жалнин [и др.]. Саранск : Изд-во СВМО, 2013. 78 с.

УДК 539.3

ОБ УРАВНЕНИЯХ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ И ПОСТАНОВКАХ ЗАДАЧ В ОБОБЩЕННЫХ УСИЛИЯХ ТЕОРИИ ОБОЛОЧЕК С ФАЗОВО-СТРУКТУРНЫМИ ПЕРЕХОДАМИ

С. И. ЖАВОРОНОК

Институт прикладной механики РАН, г. Москва, Российская Федерация

Рассматривается задача о деформировании оболочки, выполненной из сплава с эффектом памяти. Постановка и решение задач как статики, так и потери устойчивости тривиальной формы равновесного состояния тонкостенных элементов конструкций с памятью [1, 2] в обобщенных переме-