МОДЕЛИ ДЕФОРМИРОВАНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ ТИПА ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

А. АБДУСАТТАРОВ, Н. Б. РУЗИЕВА

Ташкентский государственный транспортный университет, Республика Узбекистан

Теория оболочек представляет собой весьма обширную ветвь механики деформируемого твердого тела, имеющую сложную структуру. Тонкостенные оболочечные конструкции однослойных и трехслойных (покрытия и перекрытия в строительстве, тепловые энергоустановки, газо- и нефтепроводы, сосуды высокого давления, кузова вагонов, котлы цистерн, отделка тоннелей) отличаются существенной спецификой конструктивных форм, технологией изготовления, условиями эксплуатации, упругопластических свойств применяемых материалов [1, 2].

Сформулирована постановка задачи и методика расчета процессов деформирования оболочечных конструкций — магистральных трубопроводов за пределами упругости при повторнопеременном нагружении. При выполнении расчета несущих элементов конструкции и сооружении используется главном образом теория малых упругопластических деформаций А. А. Ильюшина — В. В. Москвитина.

Следуя теории В. В. Москвитина, введем разности

$$\overline{U}_{i}^{(n)} = (-1)^{n} (U_{i}^{(n-1)} - U_{i}^{(n)}), \ \overline{e}_{ij}^{(n)} = (-1)^{n} (e_{ij}^{(n-1)} - e_{ij}^{(n)}), \ \overline{\sigma}_{ij}^{(n)} = (-1)^{n} (\sigma_{ij}^{(n-1)} - \sigma_{ij}^{(n)}).$$
(1)

Согласно [3] для определения компонентов перемещений $\overline{U}_i^{(n)}$ и деформаций $\overline{e}_{ij}^{(n)}$ при n-м нагружении имеем следующие соотношения:

$$\overline{U}_{\alpha}^{(n)} = \overline{U}^{(n)} - \frac{\gamma}{A} \cdot \frac{\partial \overline{W}^{(n)}}{\partial \alpha}, \quad \overline{U}_{\beta}^{(n)} = (1 + k_2 \gamma) \overline{V}^{(n)} - \frac{\gamma}{B} \cdot \frac{\partial \overline{W}^{(n)}}{\partial \beta}, \quad \overline{U}_{\gamma}^{(n)} = \overline{W}^{(n)} (\alpha, \beta). \tag{2}$$

Для опредения деформации, имеем следующие уточненные формулы:

$$\begin{split} \overline{e}_{\alpha\alpha}^{(n)} &= \frac{1}{R} \frac{\partial \overline{U}^{(n)}}{\partial \alpha} - \frac{\gamma}{R^2} \frac{\partial^2 \overline{W}^{(n)}}{\partial \alpha^2}, \ \overline{e}_{\beta\beta}^{(n)} &= \frac{\partial \overline{V}^{(n)}}{R \partial \beta} - \left(\gamma - k_2 \gamma^2\right) \frac{\partial^2 \overline{W}^{(n)}}{R^2 \partial \beta^2} + \left(1 - k_2 \gamma + k_2^2 \gamma^2\right) k_2 \overline{W}^{(n)}; \\ \overline{e}_{\alpha\beta}^{(n)} &= \left(1 - k_2 \gamma + k_2^2 \gamma^2\right) \frac{\partial \overline{U}^{(n)}}{R \partial \beta} - \left(\gamma - k_2 \gamma^2\right) \frac{\partial^2 \overline{W}^{(n)}}{R^2 \partial \alpha \partial \beta} + \left(1 + k_2 \gamma\right) \frac{\partial \overline{V}^{(n)}}{R \partial \alpha} - \frac{\gamma}{R^2} \frac{\partial^2 \overline{W}^{(n)}}{\partial \alpha \partial \beta}. \end{split} \tag{3}$$

При переменном нагружении компоненты напряжений и деформаций связаны следующем образом:

$$\sigma_{\alpha\alpha}^{(n)} = G_{1} \left\{ \left(e_{\alpha\alpha}^{(n)} + \mu e_{\beta\beta}^{(n)} \right) - \left[\omega^{(n)} \left(\overline{e}_{\alpha\alpha}^{(n)} + \mu \overline{e}_{\beta\beta}^{(n)} \right) + \sum_{m=1}^{k-1} \omega^{0(n-m)} \left(\overline{e}_{\alpha\alpha}^{0(n-m)} + \mu \overline{e}_{\beta\beta}^{0(n-m-1)} \right) \right] \right\};
\sigma_{\beta\beta}^{(n)} = G_{1} \left\{ \left(e_{\beta\beta}^{(n)} + \mu e_{\alpha\alpha}^{(n)} \right) - \left[\omega^{(n)} \left(\overline{e}_{\beta\beta}^{(n)} + \mu \overline{e}_{\alpha\alpha}^{(n)} \right) + \sum_{m=1}^{k-1} \omega^{0(n-m)} \left(\overline{e}_{\beta\beta}^{0(n-m)} + \mu \overline{e}_{\alpha\alpha}^{0(n-m-1)} \right) \right] \right\};
\sigma_{\alpha\beta}^{(n)} = G_{1} \left\{ e_{\alpha\beta}^{(n)} - \omega^{(n)} \overline{e}_{\alpha\beta}^{(n)} + \sum_{m=1}^{k-1} \omega^{0(n-m)} \overline{e}_{\alpha\beta}^{0(n-m)} \right\}.$$
(4)

Для вывода уравнения движения цилиндрической части трубопровода при повторнопеременном нагружении воспользуемся вариационным принципом Гамильтона — Остроградского:

$$\int_{C} (\delta T^{(n)} - \delta \Pi^{(n)} + \delta A^{(n)}) dt = 0;$$
 (5)

$$\int_{t} \delta T^{(n)} dt = \iint_{t} \left(\rho \frac{\partial U_{\alpha}^{(n)}}{\partial t} \delta \frac{\partial U_{\alpha}^{(n)}}{\partial t} + \rho \frac{\partial U_{\beta}^{(n)}}{\partial t} \delta \frac{\partial U_{\beta}^{(n)}}{\partial t} + \rho \frac{\partial U_{\gamma}^{(n)}}{\partial t} \delta \frac{\partial U_{\gamma}^{(n)}}{\partial t} \right) dV dt; \tag{6}$$

$$\int_{t} \delta \Pi^{(n)} dt = \iint_{t} \left(\sigma_{\alpha\alpha}^{(n)} \delta l_{\alpha\alpha}^{(n)} + \sigma_{\beta\beta}^{(n)} \delta l_{\beta\beta}^{(n)} + \sigma_{\alpha\beta}^{(n)} \delta l_{\alpha\beta}^{(n)} \right) dV dt; \tag{7}$$

$$\int_{t} \delta A^{(n)} dt = \iint_{t} \left[P_{1}^{(n)} \delta U_{\alpha}^{(n)} + P_{2}^{(n)} \delta U_{\beta}^{(n)} + P_{3}^{(n)} \delta U_{\gamma}^{(n)} \right] dV^{(n)} dt + \iint_{t} \left[q_{1}^{(n)} \delta U_{\alpha}^{(n)} + q_{2}^{(n)} \delta U_{\beta}^{(n)} + q_{3}^{(n)} \delta U_{\gamma}^{(n)} \right] ds dt + \iint_{t} \left[\varphi_{1}^{(n)} \delta U_{\alpha}^{(n)} + \varphi_{2}^{(n)} \delta U_{\beta}^{(n)} + \varphi_{3}^{(n)} \delta U_{\gamma}^{(n)} \right] ds_{1} dt \Big|_{\alpha} + \iint_{t} \left[f_{1}^{(n)} \delta U_{\alpha}^{(n)} + f_{2}^{(n)} \delta U_{\beta}^{(n)} + f_{3}^{(n)} \delta U_{\gamma}^{(n)} \right] ds_{2} dt \Big|_{\beta}. \tag{8}$$

Используя выражения перемещений (2), деформаций (3), связь между напряжениями и деформациями (4), а также выполняя интегрирование по частям, вводя некоторые обозначения, получили системы дифференциальных уравнений движения магистральных трубопроводов с граничными и начальными условиями [4]:

$$\begin{split} \rho h \frac{\partial^2 U^{(n)}}{\partial t^2} - \frac{G_1}{R} \Bigg[\tilde{a}_{11} \frac{\partial^2 U^{(n)}}{\partial \alpha^2} - \tilde{a}_{12} \frac{\partial^3 W^{(n)}}{\partial \alpha^3} + \tilde{a}_{13} \frac{\partial^2 V^{(n)}}{\partial \beta \partial \alpha} - \tilde{a}_{14} \frac{\partial^3 W^{(n)}}{\partial \beta^2 \partial \alpha} + \tilde{a}_{15} \frac{\partial W^{(n)}}{\partial \alpha} \Bigg] + \\ + \frac{G}{R} \Bigg(1 + k_2^2 \frac{h^2}{12} \Bigg) \Bigg[\tilde{a}_{31} \frac{\partial^2 U^{(n)}}{\partial \beta^2} + \tilde{a}_{32} \frac{\partial^3 W^{(n)}}{\partial \alpha \partial \beta^2} + \tilde{a}_{33} \frac{\partial^2 V^{(n)}}{\partial \alpha \partial \beta} + \tilde{a}_{34} \frac{\partial^3 W^{(n)}}{\partial \alpha \partial \beta^2} \Bigg] + N^{(n)} \Big(P_1^{(n)} \Big) + N^{(n)} \Big(q_1^{(n)} \Big) = 0; \\ \rho \Bigg(h + k_2^2 \frac{h^3}{12} \Big) \frac{\partial^2 V^{(n)}}{\partial t^2} - \rho k_2 \frac{h^3}{12R} \frac{\partial^3 W^{(n)}}{\partial t^2 \partial \beta} + \frac{G}{R} \Bigg[\tilde{a}_{31} \frac{\partial^2 U^{(n)}}{\partial \beta \partial \alpha} + \tilde{a}_{32} \frac{\partial^3 W^{(n)}}{\partial \alpha^2 \partial \beta} + \tilde{a}_{33} \frac{\partial^2 V^{(n)}}{\partial \alpha^2} + \tilde{a}_{34} \frac{\partial^3 W^{(n)}}{\partial \alpha^2 \partial \beta} \Bigg] + \\ + \frac{G_1}{R} \Bigg[\tilde{a}_{21} \frac{\partial^2 V^{(n)}}{\partial \beta \partial \alpha} - \tilde{a}_{22} \frac{\partial^3 W}{\partial \beta^2 \partial \alpha} + \tilde{a}_{23} \frac{\partial W}{\partial \alpha} + \tilde{a}_{24} \frac{\partial^2 U}{\partial \alpha^2} - \tilde{a}_{25} \frac{\partial^3 W}{\partial \beta^2 \partial \alpha} \Bigg] + N^{(n)} \Big(P_2^{(n)} \Big) + N^{(n)} \Big(q_2^{(n)} \Big) = 0; \\ \rho h \frac{\partial^2 W^{(n)}}{\partial t^2} - \rho \frac{h^3}{12R^2} \frac{\partial^4 W^{(n)}}{\partial t^2 \partial \alpha^2} + \rho k_2 \frac{h^3}{12R} \frac{\partial^3 V^{(n)}}{\partial t^2 \partial \beta} - \rho \frac{h^3}{12R^2} \frac{\partial^4 W^{(n)}}{\partial t^2 \partial \beta^2} + \frac{G_1}{R^2} \Bigg[\tilde{a}_{41} \frac{\partial^4 W^{(n)}}{\partial \alpha^4} - \tilde{a}_{42} \frac{\partial^4 W^{(n)}}{\partial \beta^2 \partial \alpha^2} - \\ - \tilde{a}_{43} \frac{\partial^2 W^{(n)}}{\partial \alpha^2} \Bigg] + \frac{2G}{R^2} \Bigg[\tilde{a}_{61} \frac{\partial^3 U^{(n)}}{\partial \beta^2 \partial \alpha} + \tilde{a}_{62} \frac{\partial^4 W^{(n)}}{\partial \alpha^2 \partial \beta^2} + \tilde{a}_{63} \frac{\partial^3 V^{(n)}}{\partial \alpha^2 \partial \beta} \Bigg] + \frac{G_1}{R^2} \Bigg[\tilde{a}_{41} \frac{\partial^4 W^{(n)}}{\partial \alpha^4} - \tilde{a}_{42} \frac{\partial^4 W^{(n)}}{\partial \beta^2 \partial \alpha^2} - \\ - \tilde{a}_{42} \frac{\partial^4 W^{(n)}}{\partial \beta^4} - \tilde{a}_{43} \frac{\partial^2 W^{(n)}}{\partial \beta^2} - G_1 k_2 \Bigg(1 + k_2^2 \frac{h^2}{12} \Bigg) \Bigg[\tilde{a}_{21} \frac{\partial V^{(n)}}{\partial \beta} - \tilde{a}_{22} \frac{\partial^2 W}{\partial \beta^2} + \tilde{a}_{23} W + \tilde{a}_{23} W + \tilde{a}_{24} \frac{\partial U}{\partial \alpha} - \tilde{a}_{25} \frac{\partial^2 W}{\partial \beta^2} \Bigg] + \\ + \frac{\partial}{R\partial \alpha} \Big(M^{(n)} \Big(P_1^{(n)} \Big) + M^{(n)} \Big(q_1^{(n)} \Big) \Big) + \frac{\partial}{R\partial \beta} \Big(M^{(n)} \Big(P_2^{(n)} \Big) + M^{(n)} \Big(q_2^{(n)} \Big) \Big) + Q^{(n)} \Big(P_3^{(n)} \Big) + Q^{(n)} \Big(q_3^{(n)} \Big) = 0. \tag{9}$$

Для решения краевых задач применен метод Бубнова — Галеркина и метод конечных разностей второго порядка точности [5]. Систему дифференциальных уравнений (9) можно записать в векторной форме, $U_k = (W_k, U_k, V_k)^T$, $F_k = (Z_k, X_k, Y_k)^T$; A_i — матрица третьего порядка.

$$A_{1}\ddot{U}_{n} + A_{2}\ddot{U}_{n}^{II} + A_{3}U_{n}^{IV} + A_{4}U_{n}^{II} + A_{5}U_{n}^{I} + A_{6}U_{n} + F_{n} = 0.$$

$$(10)$$

В результате получена система алгебраических уравнений, которая решается методом прогонки:

$$B_{n}U_{n,i-1}^{k+1} + C_{n}U_{n,i}^{k+1} + B_{n}U_{n,i+1}^{k+1} + \overline{A}_{n}U_{n,i+1}^{k+1} + \overline{B}_{n}U_{n,i-1}^{k} + \overline{C}_{n}U_{n,i}^{k} + \overline{D}_{n}U_{n,i+1}^{k} + \overline{A}_{n}U_{n,i+2}^{k} + B_{n}U_{n,i-1}^{k-1} + C_{n}U_{n,i}^{k-1} + B_{n}U_{n,i+1}^{k-1} + \tau^{2}F_{n,i}^{k} = 0.$$

$$(11)$$

Список литературы

- 1 **Москвитин, В. В.** Циклические нагружения элементов конструкций / В. В. Москвитин. М.: URSS, 2019. 344 с.
- 2 Старовойтов, Э. И. Деформирование трехслойных физически нелинейных стержней / Э. И. Старовойтов, Д. В. Леоненко. М.: Изд-во МАИ, 2016. 184 с.
 - 3 Власов, В. З. Общая теория оболочек и ее приложения в технике / В. З. Власов. М.: Гостехиздат, 1949. 761 с.
- 4 **Абдусаттаров, А.** Моделирование нелинейного деформирования магистральных трубопроводов при повторностатическом и динамическом нагружении с учетом повреждаемости / А. Абдусаттаров, Н. Б. Рузиева // Проблемы вычислительной и прикладной математики. Ташкент, 2021. № 4. С. 15–35.
- 5 **Самарский, А. А.** Математическое моделирование: Идеи. Методы. Примеры / А. А. Самарский, А. П. Михайлов. М.: Наука, 2001. 316 с.