Работа отмостки в период эксплуатации зданий и сооружений может быть нарушена увлажнением основания из-за замачивания при авариях санитарно-технических систем. Особенно заметно разрушение систем водоснабжения и канализации в местах ввода их в здания. В этом случае возможно не только переувлажнение конструкций, но и разрушение основания отмостки и, как следствие, ее деформация.

При выполнении шурфовочных работ, связанных с обследованием технического состояния фундаментов, неоднократно отмечалось наличие корневой части в ленточных фундаментах и под отмосткой. 30–40 % обследованных отмосток зданий, расположенных в сельской местности, были разрушены корнями деревьев и кустарников [2]. По нормативам посадка кустарников должна быть произведена на расстоянии 1–2 м, деревьев – на расстоянии 4–5 м. Но такие нормы содержат данные на деревья с диаметром кроны не более 5 м. Также в нормативах не учтен вид деревьев, тип корневой системы, вид грунта.

Соблюдение правил возведения отмостки позволяет продлить ее долговечность и защитить фундамент от негативного влияния окружающей среды. Важно соблюдать технологию, использовать качественные материалы и следить за правильной эксплуатацией.

Список литературы

- 1 **СТБ 1900-2008.** Строительство. Основные термины и определения. Введ. впервые. Минск : М-во архитектуры и стр-ва Респ. Беларусь, 2008. 45 с.
- 2 **Кудрявцев, И. А.** Гидроизоляционные системы / И. А. Кудрявцев, М. В. Беспалова, А. С. Чикилев ; под ред. И. А. Кудрявцева. Гомель : БелГУТ, 2000. 443 с.

УДК 691.32

ОЦЕНКА НАЧАЛЬНОЙ КАРБОНИЗАЦИИ БЕТОНА ЗАЩИТНОГО СЛОЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И КОНСТРУКЦИЙ

А. А. ВАСИЛЬЕВ

Белорусский государственный университет транспорта, г. Гомель

Скорость и время карбонизации бетона определяются, в первую очередь, количеством использованного цемента на 1 м³ бетонной смеси [1]. Однако определенное по результатам анализа, содержание карбонатов [2] не позволяет объективно оценивать карбонизируемость бетона, так как, одно и то же количество карбонатов для бетонов со значительно отличающимся составом (количеством использованного цемента) для одного бетона может свидетельствовать о начале карбонизации, а для другого – уже о полной карбонизации в рассматриваемом сечении. Таким образом, показатель КС не позволяет объективно оценивать карбонизацию бетона. Для оценки карбонизации предложен параметр *степень карбонизации бетона* (показатель СК), который независимо от состава бетона (количества использованного цемента) позволяет оценивать его коррозионное состояние [3]. Степень карбонизации бетона определяет процент гидроокиси кальция и гидратированных клинкерных материалов, перешедших в карбонаты на разной глубине бетона. Он численно равен отношению величины карбонатной составляющей к предельной величине карбонизации в определенном сечении бетона [3].

На основании многолетних исследований карбонизации бетона лабораторных образцов и образцов, отобранных из эксплуатируемых элементов: кинетики и механизма карбонизации; изменения по сечению бетонов различных классов по прочности на сжатие (составов бетона) во времени параметров карбонизации (карбонатной составляющей и степени карбонизации) — были предложены выражения по прогнозированию показателя СК для различных классов бетона по прочности на сжатие и условий эксплуатации [4].

В общем виде расчетно-экспериментальная зависимость степени карбонизации бетона во времени

$$CK(l, t) = \alpha_1 + (\alpha_2 + \alpha_3 \sqrt{t})e^{\left(14, 2 - \left(\frac{t + 100}{5,05}\right)^{0.85}\right)} / \alpha_4 \alpha, \tag{1}$$

где СК — степень карбонизации цементно-песчаной фракции бетона, %; l — исследуемая толщина слоя бетона; α — степень гидратации цемента, %; α_1 — α_4 — коэффициенты.

Значения показателей α_1 — α_4 для условий открытой атмосферы приведены в таблице 1.

Таблица 1 - 3начения показателей $\alpha_1 - \alpha_4$

,			-	-
Класс бетона по прочности на сжатие	α_1	α_2	α_3	α_4
$C^{12}/_{15}$	2,39	0,500	0,676	19,5
$C^{16}/_{20}$	2,77	0,565	0,634	25,8
$C^{18}/_{22,5}$	3,04	0,585	0,609	28,3
$C^{20}/_{25}$	3,22	0,625	0,586	30,8
$C^{22}/_{27,5}$	3,39	0,655	0,567	32,6
$C^{25}/_{30}$	3,62	0,710	0,538	35,4
$C^{28}/_{35}$	4,12	0,760	0,485	40,2
$C^{30}/_{37}$	4,32	0,790	0,464	42,0

Кроме того, получена зависимость показателей СК и рН (водородного показателя водной вытяжки цементного камня), определяющего состояние защитных свойств бетона по отношению к стальной арматуре [3], что позволило назначить категории степеней карбонизации и разработать критерии оценки состояния защитных свойств бетона по отношению к стальной арматуре (таблица 2).

Выражение (1) позволяет прогнозировать изменение показателя СК во времени и защитных свойств бетона по отношению к стальной арматуре в процессе эксплуатации железобетонных элементов (ЖБЭ) и конструкций (ЖБК).

Таблица 2 – Взаимосвязь параметров карбонизации бетона

Категория потери защитных свойств бетона	Степень карбонизации, СК	Граничные значения показателя СК, %	Коррозионное состояние бетона
0	0	< 13	Структурные свойства бетона соответствуют свежеприготовленному
I	I	13–26	Начало деградации бетона
II	II	> 26–36	Деградация бетона малой степени интенсивности
III	III	> 36–47	Деградация бетона средней степени интенсивности
IV	IV	> 47–74	Деградация бетона повышенной степени интенсивности
V	V	> 74	Полная деградация бетона

С учетом того, что срок эксплуатации ЖБЭ и ЖБК в условиях неагрессивной среды (жилые и общественные здания) значителен (достигает 100 и более лет), представляет интерес оценка доли карбонизации бетона защитного слоя и его состояния в доэксплуатационный период.

Для оценки начальной карбонизации принимали время t=6 мес. (0,5 г.). Граничное значение параметра t принято из условия сложения времени изготовления элемента и его хранения на складе готовой продукции, а также периода нахождения в условиях открытой атмосферы в процессе монтажа конструкций здания.

Полученные зависимости изменения показателя СК в защитном слое бетона для различных классов бетона по прочности на сжатие приведены на рисунке 1.

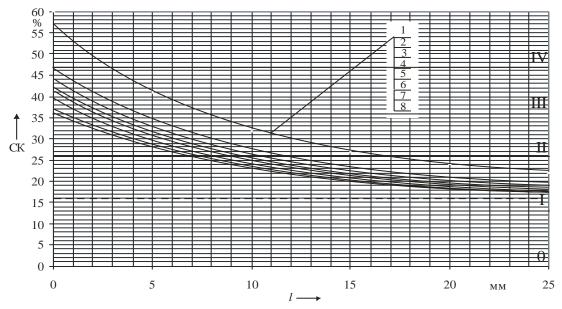


Рисунок 1 — Зависимость l — СК для различных классов бетона по прочности на сжатие: $1-\mathrm{C}^{12}/_{15}; 2-\mathrm{C}^{16}/_{20}; 3-\mathrm{C}^{18}/_{22,5}; 4-\mathrm{C}^{20}/_{25}; 5-\mathrm{C}^{22}/_{27,5}; 6-\mathrm{C}^{25}/_{30}; 7-\mathrm{C}^{28}/_{35}; 8-\mathrm{C}^{30}/_{37};$ I–IV — степени карбонизации бетона;

--- зона гарантированного начала коррозии стальной арматуры в условиях периодического увлажнения

Полученные зависимости показывают, что уже через полгода (в начальный период эксплуатации) все исследованные бетоны до глубины 25 мм (толщина защитного слоя подавляющего большинства существующих ЖБЭ и ЖБК) полностью теряют свои защитные сво-йства по отношению к стальной арматуре, и с учетом того, что при СК \approx 16 % [4], в условиях периодического влагонасыщения гарантированно образуется коррозия стальной арматуры, в условиях некачественной эксплуатации создается возможность образования и развития коррозии стальной арматуры.

Список литературы

- 1 **Васильев, А. А.** Карбонизация и оценка поврежденности железобетонных конструкций : [монография] / А. А. Васильев. Гомель : БелГУТ, 2012. 263 с.
- 2 Васильев, А. А. Карбонизация бетона (оценка и прогнозирование) : [монография] / А. А. Васильев. Гомель : БелГУТ, 2013. 303 с.
- 3 Неразрушающие методы оценки и прогнозирование технического состояния железобетонных конструкций, эксплуатирующихся в воздушных средах : практическое пособие / Т. М. Пецольд [и др.] ; под ред. А. А. Васильева. Гомель : БелГУТ, 2007. 146 с.
- 4 **Васильев, А. А.** Оценка и прогнозирование технического состояния железобетонных конструкций с учетом карбонизации бетона : [монография] / А. А. Васильев. Гомель : БелГУТ, 2019. 215 с.

УДК 624.012.3/.4:699.83

ОЦЕНКА ВРЕМЕНИ КАРБОНИЗАЦИИ БЕТОНА ЗАЩИТНОГО СЛОЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ДЛЯ АГРЕССИВНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ

А. А. ВАСИЛЬЕВ, Ю. К. КАБЫШЕВА, Н. А. ЛЕОНОВ, Е. В. СЕДУН Белорусский государственный университет транспорта, г. Гомель

В процессе эксплуатации железобетонных элементов (ЖБЭ), под воздействием агрессивных факторов атмосферной среды возникают различного рода повреждения ЖБЭ, снижая долговечность зданий и сооружений.

Наиболее интенсивно изменяют несущую способность ЖБЭ коррозионные повреждения, основным видом которых является карбонизация бетона. Развиваясь во времени, она вызывает деградацию бетона и снижение его защитных свойств по отношению к стальной арматуре. В условиях изменчивости эксплуатационной среды карбонизация бетона способствует образованию и развитию процессов коррозии стальной арматуры различной степени интенсивности.

Наиболее агрессивной эксплуатационной средой из бытовых является атмосферная среда животноводческих помещений: концентрация $CO_2 - 0.1-1.0$ %; относительная влажность — до 100 %; положительная температура в помещениях в течение всего года; наличие зон с повышенным содержанием CO_2 и влажности длительные промежутки времени с учетом специфики вентиляции; постоянное длительное воздействие CO_2 и влажности в зимний период.

Необходимо отметить, что на газовый состав воздушной среды животноводческих помещений большое влияние оказывает выдыхаемый животными воздух. Содержание в нем углекислого газа более чем в 100 раз превышает содержание в атмосферном воздухе, кислорода – меньше на 25 %. В коровниках относительная влажность (W) – 80–99 %, скорость движения воздуха (V) – 0,09–0,5 м/с, содержание CO_2 – 0,31–0,50 %, аммиака – 0,002–0,015 мг/л. В свинарниках в зависимости от периода года показатели микроклимата колеблются в следующих пределах: весной – W – 65,0–68,0 %, V – 0,16–0,19 м/с, содержание CO_2 – 0,30–0,36 %, аммиака – 5,5–6,0 мг/м³; летом – W – 57,0–60,0 %, V – 0,30–0,44 м/с, содержание CO_2 – 0,25–0,27 %, аммиака – 4,0–5,0 мг/м³; осенью – W – 66,0–72,0 %, V – 0,11–0,16 м/с, содержание CO_2 – 0,16–0,18 %, аммиака – 4,0–5,0 мг/м³; зимой – W – 70,5–71,9 %, V – 0,18 – 0,24 м/с, содержание CO_2 – 0,34–0,39 %, аммиака – 7,2–8,4 мг/м³ [1].

Обычно в животноводческих зданиях относительная влажность колеблется от 50 до 90 %. Причем она выше у пола, чем у потолка.

На техническое состояние железобетонных элементов в помещениях сельскохозяйственного назначения в первую очередь влияние оказывает углекислый газ (его концентрация превышает нормальную до 35 раз), действие которого усиливается повышенной влажностью, в результате чего при повышенной влажности воздуха бетон быстро карбонизируется и теряет защитные свойства по отношению к стальной арматуре.