экрану. Предлагают несколько вариантов керамических плит, но этот материал очень хрупкий, требующий особых навыков при монтаже. Есть плиты из фиброцемента. Используют и облицовку из декоративного искусственного камня из цемента, но она очень тяжелая и требует усиленной конструкции каркаса.

Колодцевая кладка, в которой в качестве утеплителя использованы пенообразующие заполнители, подаваемые в полости под давлением. Однако в эти полости попадает строительный мусор, снег, лед, а проконтролировать полноту заполнителя невозможно, да и присутствует нестабильность качества образующей пены. Контроль результата можно провести только на этапе эксплуатации, когда возможностей по ликвидации допущенных дефектов практически нет.

Прекрасным проверенным решением для старых и новых зданий является дополнительное утепление стен по методу «скрепленной теплоизоляции». Он заключается в закреплении специальным клеем термоизоляционных плит, защиты их поверхности полимерцементными составами, армированными специальной стеклосеткой и нанесении слоя декоративной штукатурки. Здания, утепленные таким способом, обеспечивают высокий уровень температурного комфорта в помещении, снижают расходы и выбросы в окружающую среду, а фасады при этом приобретают привлекательный индивидуальный выразительный вид.

Эффективность метода «скрепленной системы» определяется рядом преимуществ, к которым, в первую очередь, следует отнести:

- эффективное повышение теплоизоляционной способности стен и устранение мостиков «холода»;
- полное обновление фасада при сохранении его архитектурных форм;
- небольшой вес, как правило, не влияющий на несущую способность конструкции здания;
- возможность выравнивать стены в плоскости;
- легкую приспосабливаемость теплоизоляционных плит к имеющимся архитектурным деталям фасада (карнизы, пилястры и т. п.).

Недостатком этого метода является: при термомодернизации старых зданий поверхности требуют тщательной подготовки, что влечет дополнительные материальные затраты. Недостатки этих систем утепления в том, что трещины на штукатурном слое — частое явление, так как от исполнителей требуется очень тщательное соблюдение технологии. Но системы эти очень легко восстанавливаются, причем делать это можно как локально, так и полностью.

К методу утепления внутренней поверхности ограждающей конструкции прибегают при невозможности утепления наружных поверхностей ограждающих конструкций, но по возможности от него надо отказываться. Этот метод с точки зрения теплофизики в современных домах не имеет права на жизнь, так как происходит перенос точки росы во внутрь утеплителя, в помещение, что приводит к набуханию утеплителя и к снижению или даже потере его теплоизоляционных свойств.

УДК 621.311 (476.2)

МОДЕРНИЗАЦИЯ ПРОИЗВОДСТВЕННОЙ КОТЕЛЬНОЙ ПОСРЕДСТВОМ ВНЕДРЕНИЯ КОМПЛЕКСА ЭНЕРГОСБЕРЕГАЮЩИХ МЕРОПРИЯТИЙ НА ПРИМЕРЕ ЖЛОБИНСКОЙ ТЭЦ

А. И. ДЮНДИКОВА, С. Н. КОЛДАЕВА

Белорусский государственный университет транспорта, г. Гомель

Жлобинская ТЭЦ является крупным потребителем топливно-энергетических ресурсов, используемых для производства тепловой и электрической энергии. Важнейшими направлениями энергосбережения на предприятии являются повышение эффективности преобразования энергии за счет обеспечения необходимого технического состояния эксплуатируемого оборудования, совершенствования технологической схемы, режимов работы оборудования, системы учета ТЭР и сокращение потребления ТЭР на собственные нужды станции и использование ВЭР.

Жлобинская ТЭЦ расположена в г. Жлобин и предназначена для отпуска тепла в виде подогретой воды для отопления и горячего водоснабжения жилых домов, промышленных предприятий, административно-бытовых зданий и сооружений города, а также электроэнергии в сеть Белорусской энергосистемы (при выработке ее в количестве, превышающем электрические собственные

нужды ТЭЦ). Установленная электрическая мощность – 26,2 МВт. Установленная тепловая мощность – 233 Гкал.

Характер работы Жлобинской ТЭЦ определяется условиями работы энергосистемы, распределением нагрузок, структурой присоединяемых тепловых нагрузок потребителей.

Характерной особенностью годовых графиков нагрузки как по электрической, так и тепловой энергии является их сезонная неравномерность. В отопительный период при максимуме отопительной нагрузки ТЭЦ работает преимущественно по теплофикационному циклу [1].

Суточная неравномерность выработки электроэнергии и отпуска тепла в отдельные дни летнего и зимнего периодов 2020 г. приведены на рисунках 1 и 2.

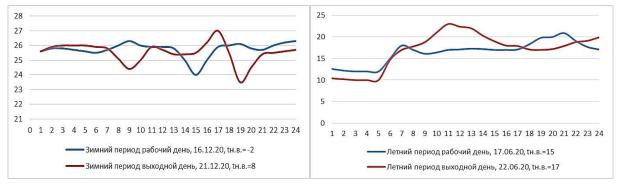


Рисунок 1 – Изменение выработки электроэнергии в МВт ТЭЦ в течение суток

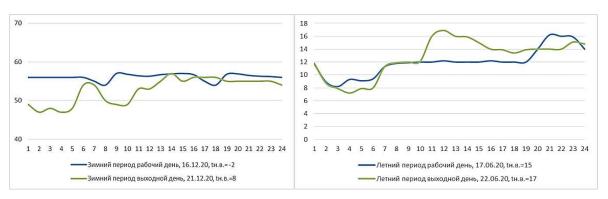


Рисунок 2 – Изменение отпуска тепла в Гкал ТЭЦ в течение суток

Как видно из вышеприведенных рисунков, неравномерность потребления электроэнергии связана со сменностью, вечерними пиками и диапазон ее изменения зимой колеблется в пределах 3—4 МВт, тогда как летом эта величина составляет 13 МВт. Максимальная нагрузка соответствует установленной мощности.

Потребление тепла в течение зимних суток носит равномерный характер и составляет около 30 % установленной тепловой мощности. Летом нагрузка падает ниже 10 % установленной мощности.

Для реализации потенциала и повышении энергосбережения на Жлобинской ТЭЦ были предложены следующие мероприятия:

- автоматизация процессов горения на водогрейных котлах № 5 и 6;
- установка частотного регулирования тягодутьевого оборудования на водогрейных котлах № 5 и 6;
- установка системы частотного регулирования электроприводов на сетевом насосе СЭ 1250-140;
- замена водогрейного котла на электрический.

Внедрение автоматизации в процесс горения уменьшает расход топлива на 3–5 %, уменьшает себестоимости тепловой энергии, повышает безопасность процесса выработки тепловой энергии, уменьшает количество аварийных остановок котлов на 80 %, снижает затраты на капитальный ремонт на 15 % [2].

С учетом нарастающей изношенности действующего оборудования ТЭЦ сохранение ее надежности и экономичности маневр электрической мощностью можно добиться за счет установки электрических котлов.

При включении в работу электрокотлов снижение электрической нагрузки ТЭЦ происходит, с одной стороны, за счет потребления электрокотлами вырабатываемой турбиной электроэнергии, и с другой — путем частичного замещения при этом тепловой нагрузки отборов турбины отпуском теплоты от электрокотлов, что, в свою очередь, также приводит к уменьшению электрической мощности теплофикационного энергоблока [3].

Поэтапное внедрение мероприятий позволит снизить удельные расходы топлива на отпуск электрической и тепловой энергии, а также расход электроэнергии на собственные нужды, относимые на электроэнергию и тепло, в сопоставимых к базовому году условиях. Фактическое снижение среднегодового удельного расхода в полной мере будет происходить в году, следующем за годом внедрения.

Перспективный план повышения энергосбережения Жлобинской ТЭЦ показан в таблице 1. Данные показывают годовой экономический эффект в тоннах условного топлива и рублях, сумму капиталовложений и сроки окупаемости каждого мероприятия.

Таблица 1 – План мероприятий по энергосбережению

Мероприятие	Годовой экономический эффект		- Ориенти-			Условия выполнения мероприятий	
	т у.т.	руб.	ровочный срок внедрения, год	Капитало- вложения, руб.	Срок окупае- мости, лет	Модернизация действующего оборудования	Замена обору- дования
		Автомат	изация проц	ессов горения			
Котел № 6	5,3	2821,72	2021	1450	0,51	+	
Котел № 5	6,89	3673,56	2021	1950	0,53	+	
	Установка	частотного регу	лирования т	<i>1ягодутьевого</i> с	оборудовани	Я	
Вентилятор котла № 6	22,85	12165	2022	20681	1,7	+	
Вентилятор котла № 5	21,41	11397	2022	20663	1,8	+	
Дымосос котла № 6	30,47	16227	2022	29289	1,8	+	
Дымосос котла № 5	28,99	15439	2022	29335	1,9	+	
Установка системы частотного регулирования электроприводов на сетевом насосе СЭ 1250-140	49,42	26315,28	2023	76776	2,9	+	
Замена водогрейного котла КВГМ-50 на электри- ческий Wespe Heizung Kombi(60)	2959,03	1575,39	2024	21425,3	13,6		+
Итого	3124,36	89613,95		201569,3			

Реализация разработанной программы позволит получить экономию энергоресурсов в объеме 3124,36 т у.т., или в денежном выражении 89,6 тыс. руб. Мероприятие по автоматизация процессов горения позволит сэкономить 12,19 т у.т., в денежном эквиваленте 6,5 тыс. руб.; установка частотного регулирования тягодутьевого оборудования — 103,72 т у.т., в денежном эквиваленте 55,2 тыс. руб.; установка системы частотного регулирования электроприводов на сетевом насосе СЭ 1250-140 — 49,42 т у.т., в денежном эквиваленте 26,3 тыс. руб.; замена водогрейного котла КВГМ-50 на электрический Wespe Heizung Kombi(60) [4] — 2959,03 т у.т., в денежном эквиваленте 1575,39 тыс. руб.

Список литературы

- 1 Принцип работы ТЭЦ [Электронный ресурс]. Режим доступа : https://mosenergo.gazprom.ru/about/plantwork/. Дата доступа : 09.07.2021.
- 2 Автоматизация процессов горения на источниках теплоты [Электронный ресурс]. Режим доступа : http://www.energosovet.ru/bul_stat.php?idd=10/. Дата доступа : 10.07.2021.
- 3 **Нагорнов В. Н.** Установка электрокотлов на ТЭЦ и эффективность теплофикации / В. Н. Нагорнов, В. И. Шкода ; Белорусская государственная политехническая академия. Минск, 2018. 65 с.
- 4 Румконт. Электрическая техника [Электронный ресурс]. Режим доступа: http://rubikont.by/elektricheskiy-kotel-kombi. Дата доступа: 21.07.2021.