- 3 **Ерофеев, А.А.** Разработка интеллектуальной системы управления перевозочным процессом на Белорусской железной дороге / А. А. Ерофеев, О. А. Терещенко, В. В. Лавицкий // Железнодорожный транспорт. 2020. № 6. С.74–77.
- 4 Анализ основных направлений применения цифровых технологий в деятельности железнодорожного транспорта, таможенных и иных контрольных органов, биржевой и дистрибьюторской практики, основных экспортно-ориентированных субъектов предпринимательства (концернов, холдингов) Беларуси. Отчет по теме № 12986 от 22.05.2019. (№ ГР 20191873).

СВЕДЕНИЯ ОБ АВТОРАХ:

- Ерофеев Александр Александрович, г. Гомель, УО «Белорусский государственный университет транспорта», проректор по научной работе, канд. техн. наук, доцент, erofeev_aa@bsut.by;
- Терещенко Олег Анатольевич, г. Гомель, УО «Белорусский государственный университет транспорта», старший преподаватель кафедры управления эксплуатационной работой и охраны труда, uer@bsut.by.

УДК 656.224/.225:004

УПРАВЛЕНИЕ ПЕРЕВОЗОЧНЫМ ПРОЦЕССОМ В РАЙОНЕ МЕСТНОЙ РАБОТЫ ЖЕЛЕЗНОЙ ДОРОГИ НА ОСНОВЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

А. А. ЕРОФЕЕВ, О. А. ТЕРЕЩЕНКО, В. Г. КОЗЛОВ УО «Белорусский государственный университет транспорта», г. Гомель

В районах местной работы железной дороги перевозочный процесс характеризуется широким влиянием внешних по отношению к системе управления железной дорогой факторов. Это обусловлено непосредственной взаимосвязью технологических процессов перевозчиков, клиентов, операторов инфраструктуры. В результате проведенного анализа установлено, что:

- развитие отрасли характеризуется значительным усложнением практики управления местными вагонопотоками, увеличением требований клиентов к срокам и условиям доставки грузов;
- в условиях функционирования и развития ЦУП возникла необходимость решения задач централизации и комплексной информатизации управления перевозками для уровня отделения дороги и станции с целью общего повышения эффективности транспортного процесса;
- в системе управления перевозками отсутствует детализированная модель инфраструктуры станций, мест общего и необщего пользования на по-

лигоне управления ЦУМР, что не позволяет качественно контролировать перевозочный процесс на всех фазах его реализации;

- в системе управления перевозками отсутствуют сведения о дислокации подвижного состава в режиме реального времени, что затрудняет решение задач оперативного планирования местной работы;
- решение задач организации и управления местной работой на полигоне отделения железной дороги осуществляется со значительной долей экспертных оценок в процессе принятия управленческих решений;
- отсутствуют механизмы фиксации результатов текущего планирования процессов образования местных поездов и маневровой работы, что не дает возможности произвести сравнение плана и факта, выявить причины невыполнения плана;
- в существующей технологии планирования не предусмотрен пономерной подбор вагонов для включения (исключения) в состав местного поезда, как на станции формирования, так и на станциях его работы. В результате не обеспечивается необходимая точность плановых заданий, редуцируются функции контроля.

Повышение уровня управляемости перевозочного процесса в указанных условиях может быть осуществлено за счет решения следующих задач:

- обеспечения динамического прогноза времени подхода грузовых поездов всех категорий к техническим станциям в районе местной работы;
- обеспечения динамического прогноза времени завершения грузовых операций с вагонами в районе местной работы на местах общего и необщего пользования;
- точного динамического позиционирования в режиме реального времени подвижного состава на инфраструктуре станций, перегонов, мест общего и необщего пользования.

Решение указанных задач является основой для эффективной разработки оперативных планов деятельности железнодорожных участков и узлов, а также для реализации контрольных функций в процессе текущей и итоговой оценки параметров и показателей перевозочного процесса в районах местной работы.

Расчет прогнозного времени подхода грузовых поездов к техническим станциям и времени завершения грузовых операций с вагонами предлагается осуществлять на основе специально разработанной динамической модели, которая позволяет применить новый подход в оперативном планировании местной работы.

В модели идентифицированы, классифицированы и представлены в формализованном виде инфраструктурные и динамические объекты железнодорожного транспорта, что обеспечивает пооперационное моделирование обслуживания транспортного потока в реальном масштабе времени и получение более детальных и точных результатов оперативного планирования местной работы на объектах управления. Динамическая модель, включаю-

щая технологические модели пооперационного выполнения местной работы, позволяет алгоритмизировать задачи оперативного планирования, решаемые в реальном масштабе времени, является основой развития информационно-аналитических систем и обеспечивает повышение качества получаемых решений в процессе оперативного планирования. Объектами динамической модели перевозочного процесса являются: 1) объекты инфраструктуры: перегоны, станции и их подсистемы; 2) динамические объекты: вагонный парк, грузы, локомотивный парк, объекты технологического обеспечения.

Технологическая составляющая динамической модели сформирована в виде модели местной работы. В ней каждый модуль рассматривается как система двух параллельных процессов: а) обработки вагонопотока; б) оперативного управления, включающего обработку документов и информационных потоков.

В результате проведенных исследований установлено, что совокупное влияние случайных факторов при моделировании местной работы может быть описано функциями плотности распределения вероятности остатков прогноза времени прибытия вагонов на техническую станцию и времени завершения выполнения с вагонами грузовых операций.

Выполняемые с вагонами операции в модели предлагается представлять в виде последовательной структуры. В ней цепи операций, выполняемых по мере поступления вагонов в канал обслуживания, разделены операциями, выполняемыми по расписанию. При этом для каждого момента расписания формируется нечеткое множество из числа готовых к обработке вагонов и набора ограничений, которыми выступают допустимая длина железнодорожного состава и его допустимая масса.

Оперативный прогноз перевозочного процесса составляется в виде расписания с указанием в нем для каждой операции возможных моментов начала выполнения и нечетких множеств готовых к обработке вагонов.

При решении задачи оперативного планирования (на основе выполненного прогноза) производится анализ нечетких множеств:

- определяется математическое ожидание числа вагонов, готовых к обработке для каждого момента расписания. Это основа для составления оперативного плана;
- формируются альфа-срезы нечетких множеств. Они служат оценкой устойчивости для числа накопленных вагонов.

Технологические риски для оперативного плана оцениваются расчетами:

- вероятности нарушения для вагона предельно допустимого времени нахождения в технологической цепи, что в итоге может нарушить, например, срок доставки груза;
- вероятности нарушения установленных ограничений для операций, выполняемых по расписанию. В результате так же могут наблюдаться необоснованные простои вагонов, нерациональное использование ресурсов.

Оперативный анализ перевозочного процесса предлагается выполнять на основе предложенной уточненной модели накопления вагонов, учитывающей вероятностный характер поступления вагонов в накопление. Модель имеет три составляющие, каждая из которых обоснована и адаптирована к параметрам неопределенности информации о поступлении вагонов в накопление.

При решении задач организации перевозочного процесса в районе местной работы необходимо использовать преимущества, предоставляемые технологиями GPS и цифровой инфраструктуры. Это позволит:

- производить автоматическую регистрацию событий, связанных с выполнением технологического процесса;
- обеспечить представленную динамическую модель информацией с привязкой в режиме реального времени к установленным точкам контроля;
- обеспечить ведение детализированной вагонной и локомотивной моделей местной работы в режиме реального времени.

Геопозиционирование предлагается осуществлять только для тягового подвижного состава. Результаты его позиционирования необходимо сопоставлять с моделями АСУС и ИАС ПУР ГП, что позволит:

- однозначно идентифицировать нахождение подвижного состава на одном из параллельно расположенных путей, решив задачу уменьшения погрешности позиционирования;
- обеспечить точное позиционирование вагонов в модели только за счет привязки их к локомотиву в маневровом составе без оборудования датчиками.

Комплексная реализация и внедрение предложенных решений предполагает создание информационно-управляющей системы центра управления местной работой (ИУС ЦУМР), которая должна отвечать следующим требованиям и критериям:

- создаваться по архитектуре «тонкий клиент сервер». Требования к режимам функционирования, надежности, защите информации от несанкционированного доступа, сохранности информации при авариях, защите от внешних воздействий должны соответствовать требованиям, предъявляемым к ИАС ПУРГП;
- проектироваться как масштабируемая и расширяемая система с возможностью последующего развития имеющегося функционала;
- для функционирования системы должны использоваться существующие каналы связи, действующие протоколы информационного обмена и установленное клиентское оборудование;
- использовать для функционирования общесистемные справочники ИАС ПУРГП;
- предусматривать однократный ввод оперативной информации и последующее ее многократное использование;

- предоставлять возможности пользователям формировать необходимые аналитические выходные решения при помощи стандартных средств SAP Business Objects.

Критерием оценки эффективности внедрения ИУС ЦУМР может служить снижение:

- потребности в перевозочных ресурсах (уменьшение эксплуатируемого количества локомотивов и парка грузовых вагонов) за счет оптимизации их использования;
- эксплуатационных расходов, связанных с содержанием парка локомотивов и грузовых вагонов, организацией маневровой работы и движения местных поездов.

При создании ИУС ЦУМР также следует учитывать необходимость:

- достижения приемлемого уровня экономической эффективности инвестиционного проекта с учетом финансово-экономического положения Белорусской железной дороги;
- обеспечения приемлемых сроков создания и внедрения программного обеспечения во взаимосвязи с комплексом необходимых технических средств;
- обеспечения соответствия заявленных требований к ИУС ЦУМР результатам ее разработки.

Таким образом, в настоящее время на Белорусской железной дороге имеются предпосылки и создана необходимая техническая и технологическая база для совершенствования системы управления перевозками за счет создания ИУС ЦУМР.

Список литературы

- 1 Ерофеев, А. А. Выбор оптимального варианта поездообразования на полигоне методом динамического программирования / А. А. Ерофеев // Вестник ВНИИЖТа. – $2007. - N_{2} 4. - C. 11-15.$
- 2 Терещенко, О. А. Динамическая модель перевозочного процесса для решения задачи оперативного планирования местной работы железнодорожных участков и узлов / О. А. Терещенко // Вестник БелГУТа: Наука и транспорт. – 2017. – № 1 (34). – С. 68–71.
- 3 Терещенко, О. А. Оперативное планирование местной работы железнодорожных участков и узлов с использованием динамической модели перевозочного процесса / О. А. Терещенко // Транспортні системи та технології перевезень : зб. наук. пр. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – 2016. – № 12. – С. 80–89.
- 4 Юсипов, Р. А. Прогнозирование показателей в оперативных планах поездной и грузовой работы: дис. ... канд. техн. наук: 05.22.08 / Р. А. Юсипов. – М., 2007. – 195 с.

СВЕДЕНИЯ ОБ АВТОРАХ:

■ Ерофеев Александр Александрович, г. Гомель, УО «Белорусский государственный университет транспорта», проректор по научной работе, канд. техн. наук, доцент, erofeev_aa@bsut.by;

- Терещенко Олег Анатольевич, г. Гомель, УО «Белорусский государственный университет транспорта», старший преподаватель кафедры управления эксплуатационной работой и охраны труда, uer@bsut.by;
- Козлов Владимир Геннадьевич, г. Гомель, УО «Белорусский государственный университет транспорта», заведующей НИЛ «Управление перевозочным процессом», vgkozlov@gmail.com.

УДК 656.224 (476)

ПОВЫШЕНИИ ЭФФЕКТИВНОСТИ ПАССАЖИРСКИХ ПЕРЕВОЗОК НА БЕЛОРУССКОЙ ЖЕЛЕЗНОЙ ДОРОГЕ

А. А. ЗАХАРЕВИЧ

ГО «Белорусская железная дорога», г. Минск

Белорусская железная дорога является пассажирским перевозчиком на железнодорожном транспорте общего пользования по территории Республики Беларусь и выполняет весь комплекс услуг по организации перевозки пассажиров и осуществляет важную социально-экономическую роль в коммуникации граждан и удовлетворении их потребностей в передвижении с обеспечением безопасности и качественного обслуживания пассажиров на вокзалах и в поездах [1].

Белорусская железная дорога располагает необходимой инфраструктурой для организации пассажирских перевозок. На дороге функционирует 19 железнодорожных вокзалов, среди которых четыре внеклассных. Все станции, на которых осуществляется регулярная посадка и высадка пассажиров оборудованы пассажирскими платформами и необходимыми обустройствами для оказания услуг исходя из их объема и категории пассажирских поездов.

Продажа билетов на Белорусской железной дороге полностью автоматизирована и осуществляется через АСУ «Экспресс-3». В пунктах продажи проездных документов установлено терминальное оборудование, позволяющее в считанные минуты приобрести проездные документы до станций, расположенных на сети железных дорог государств—участников Содружества Независимых Государств, стран Балтии и Западной Европы.

Выполнение пассажирооборота по итогам работы за 2019 год Белорусской железной дороги составило 6274 млн. пас.-км, на долю которого приходится порядка 23 % в общем пассажирообороте в РБ [2]. Структура пассажирооборота (рисунок 1) по видам сообщения:

- межрегиональное -41,6 %;
- региональное 39,4 %;
- международное 17,5 %;
- городское -1.5 %.