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A PROBLEM OF WAVE PROPAGATION IN AN ELASTIC TUBE 
CONTAINING HETEROGENEOUS LIQUID 

In the work there is performed the solution of a one-dimensional problem of harmonic 
waves propagation in an orthotropic elastic tube containing heterogeneous incompressible 
liquid with the rheological behaviour described by Maxwell model. There is numerically 

depicted the influence of concentration of inclusions on wave characteristics for the case of 

long stationary waves propagation in heterogeneous liquid flowing in an elastic tube of 

variable circular section. The properties of the liquid comply with linear visco-elastic model 

of Foigt. The solution of this problem is defined by singular boundary problem of Sturm – 

Liouville. It is assumed that the tube is rigidly fixed to surrounding and, thus, its longitudi-

nal displacement is equal to null. Cases of finite and semi-infinite tubes are considered. 

Keywords: wave propagation, elastic tube, heterogeneous liquid, harmonic waves, vis-
coelasticity, haemodynamics. 

1 Introduction. The flow of liquid in deformed tubes in many cases can be de-
fined by equations of hydraulic approximation. The majority of works in this di-

rection are based on the assumption of homogeneity of tube material. In many 
practically important cases we have to deal with propagation of stationary waves 

in elastic tubes that contain heterogeneous liquids and the velocity of propagation 
is a wave local parameter and it is considered as a function of coordinates. 

For the analysis of flow of colloidal solutions, suspensions, high-molecular 
compounds we use rheological models representing different combinations of 
elastic and viscous elements. Their behavior at least qualitatively corresponds to 
the behavior of the abovementioned mediums.  

Theoretical developments, obtained from solutions of interaction problems for 
a cylindrical shell with a viscous liquid flowing in it due to the definite physical 

approximations may be carried for the case of disperse liquid. This generalization 
is made through introduction of the dynamic viscosity effective coefficient. 

From the qualitative analysis it follows that at known boundary conditions 
(functional systems) liquid rheological properties have an apparent impact on its 

velocity and hydraulic impedance, and viscosity of tube material affects the dis-
placement, velocity and impedance. 

It should be noted that due to the problem of linearity the real parts of solu-
tions, obtained from the arbitrary kernels of heredity, have their physical meaning. 

2 Mathematical formulation. Firstly, there should be defined the system that 
describes propagation of small amplitude waves in a suspension flowing in a de-

formed shell. A liquid mathematical model should consider the fact that multi-
phase systems are mixtures of hard particles, liquefied droplets and bubbles (dis-

crete phases) that are widespread in a liquid (carrying and continuous phase) [1]. 
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Research of multiphase systems dynamics covers wide fields of science and 
technology and it is connected with a lot of fundamental problems. Here, we can 
mention, e. g. such important cases as cryogenic liquids pumping-over, radioactive 
precipitation, deposition, haemodynamics etc. For our purposes we will interpret 

disperse medium as incompressible Newtonian liquid with the density of water ρf, 
containing non-interacting particles of identical size. It is assumed that the veloci-
ties of continuous and discrete phases are the same. Then, an effective dynamic 

viscosity µ of diluted suspension of hard spherical particles having neutral buoy-
ancy (i. e. non-depositing and non-emerging) in a liquid carry-over with a viscosi-

ty of µ0 can be calculated through the formula of Einstein [2] 
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5
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 µ = µ + φ 
 

 (1) 

where φ – volumetric concentration of particles in parts of units. This result was 
generalized by Taylor [2] on suspension of droplets which keep their spherical 
form, e. g. due to surface tension. A consecutive correlation is as follows: 
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in which µ  – viscosity of liquid that makes droplets. When µ  becomes infinitely 

large, i. e. when the droplets appear to become, actually, hard particles, this corre-
lation is reduced to (1). 

Effective viscosity of hard asymmetric particles suspension increases with the 
growth of particles concentration as well as with power of their asymmetry. This 
dependence is defined by the formula 

( )0 1 Kµ = µ + φ , 

where K (factor of geometry) is more than 5/2. In the case of rotation in relation to 
half-axles 6:1 of hard mixtures of non-spherical particles of elliptical form, K 

takes the value equal to 5 and the mixture viscosity increases as follows [2]: 

 ( )0 1 5 .µ = µ + φ  (3) 

The assumptions provide opportunity to consider the known contact conditions 
of conjugation of linear hydroelasticity. Now if to take into consideration the condi-
tion of impermeability and to assume that the tube is rigidly fixed to surroundings 
and the wall material cannot make any movement along its axis x, then there can be 
written the mean equations of impermeability and those of Navier-Stokes for the 
mixture as a whole based on abovementioned assumptions in the following form [3]: 
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In (4), (5) w(x, t) – is a radial displacement of a tube of radius R and thickness 
h, u(x, t) – is a mean velocity of mixture flow, p(x, t) – hydrodynamic pressure. As 

for the dynamic coefficient of mixture viscosity µ, it depends on concentration φ 
and should be defined in actual examples by formulas (1)–(3). 

The systems (4) and (5) can be transformed to a single equation 
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Substituting here 
u
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R t

∂
∂

and putting this into the last dependence, we have 
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Next, for completion of equation (6), let’s write down the equation of condi-
tion for the tube material, considering that it is elastic, orthotropic and thin-walled. 
For these conditions it is sufficient to use the following correlation [4]: 
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where ρ∗ – is a density of tube material, v1 and v2 – are coefficients of Poisson, E2 – 
modulus of elasticity in a circumferential direction. It should be mentioned that 
the condition of Maxwell to hold herewith:  

2 1 1 2E v E v= , 

E1 – is an axial Young’s modulus.  
Let’s take the second derivative along x in the equation (7) and consider the re-

sult in (6). Then, considering 
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we get the following equation 
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which describes dynamic behaviour of the “shell-liquid” system. 
3 Numerical method and parameters. The method of Fourier is applied for 

description of complex impulses, typical for wave processes; hence solution of 
equation (8) is obtained from the final sum of the main oscillation and higher har-
monics. [5] This statement allows to represent the function w in the following 
form: 
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where ys(x) – unknown complex functions of coordinates of dimension, ω  – 

known angular frequency, i – imaginary unit, and S – harmonic value. 

Considering the system linearity, the change of each harmonics s and the defi-

nition of the disturbance form there can be obtained the sum of each component 

related to the given point. Substituting (9) into (8), for sth harmonics we have 
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where the prime means differentiation along coordinate x, and value λs is defined 

from the solution of the following disperse equation: 
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Dividing equation (11) into real and imaginary parts and introducing the 

indications 
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we get 

 
2

0 1s s siλ = λ − λ . (12) 

Solving disperse equation (12), choosing the root Im λ < 0 and using the 

known formula of calculation of square root from a complex value, we find: 

 0 1s s siλ = δ − δ  (13) 

In (13) it is assumed that 
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With this the velocity of propagation of sth wave is defined as 
0 s

sω
δ

, and 1sδ  – 

damping coefficient. 

4 Derivations and numerical analysis. Firstly, it should be mentioned that 

the common solution to the equation (10) is written in the form: 

 s si x i x

s s sy A e B e
− λ λ= + , (14) 
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where As and Bs – constants of integration determined from the boundary condi-

tions to be defined further. Now for function w and p we may write 
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Both of these results can be derived from formulas (7) and (9), in case we con-

sider in them the dependence (14). 

Now it is remained to define the velocity of liquid flow. For this we state 
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With this in mind and using the equation (5), after elementary conversions it is 

possible to find 
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where the value 
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is a hydraulic impedance of sth harmonic. The value of 8µ/R2 characterizes hydrau-

lic resistance, and sω – induction. Hence it follows that hydraulic resistance linear-

ly depends on µ, and induction – on harmonic s. 

Now, let’s describe pressure propagation, flow velocity and displacement for a 

straight tube of length l. For this let’s formulate the following boundary condi-

tions. The pressure changes according to the law 
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at x = 0 and for simplicity it equals to zero at x = l. In (19) p0s – known empirical 

constants. Due to the written boundary conditions, the obtained system of algebra-

ic equations is necessary for definition of As and Bs. It has the following form: 
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Hence it follows that  
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Using these equations in (15), (16) and (18), we find 
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Consecutive correlations for the limited case of semi-infinite tube can be ob-

tained through calculation of limit of the expressions (20)–(22) at l approaching 

infinity. It may be shown that at Im λs < 0 (that was mentioned earlier) and 
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then from the above mentioned formulas it follows that the related solution can be 

written as follows: 
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It should be noted that due to the system linearity, the physical meaning has 

the true parts of the built solution.  

Let’s move forward to calculation of the amplitude of pressure |ps| for the sth 

harmonic. We have 

0
si x is t

s sp p e e
− λ ω= , 

hence, taking into account (13) and considering Euler’s formula we may write 
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From the previous equation it is easy to get for pressure amplitude that 

 1
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Following the equation (23) for the amplitude of displacement we may write 
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Doing the same we can calculate the amplitude of flow velocity, that for the sth 

harmonic has the following appearance: 
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Here the coefficients a0s, a1s and a2s to be written down as follows: 
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5 Results and Conclusions. For estimation of the result, received form con-

sidering an “amendment” to the dynamic viscosity coefficient, we are interested to 

see the influence of heterogeneity. In order to get a numerical result, we assume 

that the tube is orthotropic. The numerical experiment with the following system 

parameters is proposed R = 0.5 cm; µ = 0.1 g/cm · sec; h = 0.2 cm; ρf = ρ* = 1 g/cm3; 

ω = 2π sec–1; x = 0; E2 = 4 · 106 dyn/cm2; ν1 = 0.1; ν2 = 0.3; p01 = 1.4 · 103 dyn/cm2; 

p03 = 2.4 · 102 dyn/cm2. 

Table 1 shows the values of wave velocity depending on concentration φ, at 

s = 1 and s = 3, when an effective viscosity is calculated through the formula (1). 

Table 2 shows the values for the damping coefficient depending on φ. Table 3 for 

the same case shows the dependence of velocity amplitude of mixture flow for 

various volumetric concentrations. 

Table 1 – The values of wave velocity depending on concentration φφφφ 

s 
c, cm/sec 

φ = 0 φ = 0.1 φ = 0.2 φ = 0.3 

1 882 855 824 793 
3 895 889 905 901 

Table 2 – The values for the damping coefficient depending on φφφφ 

s 
δ1, sec-1 

φ = 0 φ = 0.1 φ = 0.2 φ = 0.3 

1 0.0017 0.0025 0.0038 0.0039 
3 0.0018 0.0026 0.0035 0.0043 
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Table 3 – Velocity amplitude of mixture flow for various volumetric concentrations 

s 
us, cm/sec 

φ = 0 φ = 0.1 φ = 0.2 φ = 0.3 

1 1.43 1.34 1.25 1.17 

3 0.26 0.25 0.25 0.24 

Based on received numerical calculations we can make the following conclusions: 

– the wave velocity and the amplitude of flow velocity decrease with the in-

crease of φ; 

– the biggest increase against concentration φ is observed for the coefficient δ1 

(almost two times more); 

– with the increase of harmonics the wave velocity increases. 
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Э. А. АСЛАНОВ 

Азербайджанский технический университет, Баку, Азербайджан 

О РАСПРОСТРАНЕНИИ ВОЛН В УПРУГОЙ ТРУБКЕ,  

СОДЕРЖАЩЕЙ ГЕТЕРОГЕННУЮ ЖИДКОСТЬ 

Выполнено решение одномерной задачи о распространении гармонических волн 

в ортотропной упругой трубке, содержащей неоднородную несжимаемую жидкость, 

реологическое поведение которой описывается моделью Максвелла. Численно про-

анализировано влияние концентрации включений на волновые характеристики для 

случая распространения длинных стационарных волн в неоднородной жидкости, 

текущей в упругой трубке переменного округлого сечения, свойства которой соот-
ветствуют линейной вязкоупругой модели Фойхта. Решение этой задачи определяет-

ся сингулярной краевой задачей Штурма – Лиувилля. Предполагается, что трубка 

жестко закреплена в окружающем пространстве и, следовательно, ее продольное 

смещение равно нулю. Рассмотрены случаи конечных и полубесконечных трубок. 

Ключевые слова: распространение волн, упругая трубка, неоднородная жид-

кость, гармонические волны, вязкоупругость, гемодинамика. 
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