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A PROBLEM OF WAVE PROPAGATION IN AN ELASTIC TUBE
CONTAINING HETEROGENEOUS LIQUID

In the work there is performed the solution of a one-dimensional problem of harmonic
waves propagation in an orthotropic elastic tube containing heterogeneous incompressible
liquid with the rheological behaviour described by Maxwell model. There is numerically
depicted the influence of concentration of inclusions on wave characteristics for the case of
long stationary waves propagation in heterogeneous liquid flowing in an elastic tube of
variable circular section. The properties of the liquid comply with linear visco-elastic model
of Foigt. The solution of this problem is defined by singular boundary problem of Sturm —
Liouville. It is assumed that the tube is rigidly fixed to surrounding and, thus, its longitudi-
nal displacement is equal to null. Cases of finite and semi-infinite tubes are considered.

Keywords: wave propagation, elastic tube, heterogeneous liquid, harmonic waves, vis-
coelasticity, haemodynamics.

1 Introduction. The flow of liquid in deformed tubes in many cases can be de-
fined by equations of hydraulic approximation. The majority of works in this di-
rection are based on the assumption of homogeneity of tube material. In many
practically important cases we have to deal with propagation of stationary waves
in elastic tubes that contain heterogeneous liquids and the velocity of propagation
is a wave local parameter and it is considered as a function of coordinates.

For the analysis of flow of colloidal solutions, suspensions, high-molecular
compounds we use rheological models representing different combinations of
elastic and viscous elements. Their behavior at least qualitatively corresponds to
the behavior of the abovementioned mediums.

Theoretical developments, obtained from solutions of interaction problems for
a cylindrical shell with a viscous liquid flowing in it due to the definite physical
approximations may be carried for the case of disperse liquid. This generalization
is made through introduction of the dynamic viscosity effective coefficient.

From the qualitative analysis it follows that at known boundary conditions
(functional systems) liquid rheological properties have an apparent impact on its
velocity and hydraulic impedance, and viscosity of tube material affects the dis-
placement, velocity and impedance.

It should be noted that due to the problem of linearity the real parts of solu-
tions, obtained from the arbitrary kernels of heredity, have their physical meaning.

2 Mathematical formulation. Firstly, there should be defined the system that
describes propagation of small amplitude waves in a suspension flowing in a de-
formed shell. A liquid mathematical model should consider the fact that multi-
phase systems are mixtures of hard particles, liquefied droplets and bubbles (dis-
crete phases) that are widespread in a liquid (carrying and continuous phase) [1].
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Research of multiphase systems dynamics covers wide fields of science and
technology and it is connected with a lot of fundamental problems. Here, we can
mention, e. g. such important cases as cryogenic liquids pumping-over, radioactive
precipitation, deposition, haemodynamics etc. For our purposes we will interpret
disperse medium as incompressible Newtonian liquid with the density of water py,
containing non-interacting particles of identical size. It is assumed that the veloci-
ties of continuous and discrete phases are the same. Then, an effective dynamic
viscosity W of diluted suspension of hard spherical particles having neutral buoy-
ancy (i. e. non-depositing and non-emerging) in a liquid carry-over with a viscosi-
ty of Uy can be calculated through the formula of Einstein [2]

5
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where ¢ — volumetric concentration of particles in parts of units. This result was
generalized by Taylor [2] on suspension of droplets which keep their spherical
form, e. g. due to surface tension. A consecutive correlation is as follows:
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in which @ — viscosity of liquid that makes droplets. When I becomes infinitely

large, i. e. when the droplets appear to become, actually, hard particles, this corre-
lation is reduced to (1).

Effective viscosity of hard asymmetric particles suspension increases with the
growth of particles concentration as well as with power of their asymmetry. This
dependence is defined by the formula

H=u, (1+K9),

where K (factor of geometry) is more than 5/2. In the case of rotation in relation to
half-axles 6:1 of hard mixtures of non-spherical particles of elliptical form, K
takes the value equal to 5 and the mixture viscosity increases as follows [2]:

b=y (1+50). 3)

The assumptions provide opportunity to consider the known contact conditions
of conjugation of linear hydroelasticity. Now if to take into consideration the condi-
tion of impermeability and to assume that the tube is rigidly fixed to surroundings
and the wall material cannot make any movement along its axis x, then there can be
written the mean equations of impermeability and those of Navier-Stokes for the
mixture as a whole based on abovementioned assumptions in the following form [3]:

du 2 dw
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In (4), (5) w(x, f) —is a radial displacement of a tube of radius R and thickness
h, u(x, t) — is a mean velocity of mixture flow, p(x, f) — hydrodynamic pressure. As
for the dynamic coefficient of mixture viscosity W, it depends on concentration ¢
and should be defined in actual examples by formulas (1)-(3).

The systems (4) and (5) can be transformed to a single equation

L82p+ 8u du 282w_
p;ox®> p,R*Ix RI*

) 29
Substituting here a—u for Ea—w and putting this into the last dependence, we have
X t
19°p 16 aw 29w _
p; ox’ pr3 or R o’
Next, for completion of equation (6), let’s write down the equation of condi-

tion for the tube material, considering that it is elastic, orthotropic and thin-walled.
For these conditions it is sufficient to use the following correlation [4]:
E, h 0’w

= —w+ph—, )
P I-vv, R? P or?

(6)

where p- — is a density of tube material, v, and v, — are coefficients of Poisson, E; —
modulus of elasticity in a circumferential direction. It should be mentioned that
the condition of Maxwell to hold herewith:

Eyv = Ey,,
E, — is an axial Young’s modulus.

Let’s take the second derivative along x in the equation (7) and consider the re-
sult in (6). Then, considering

E h ,
ce=—2——— and P _ P,
2p, (I=vv,) R Py
we get the following equation
’w  Rh d'w 8w ow 1 9w
Sl -2, )

ox? 2¢; ox*or’ pfch2 ot ¢; ot

which describes dynamic behaviour of the “shell-liquid” system.

3 Numerical method and parameters. The method of Fourier is applied for
description of complex impulses, typical for wave processes; hence solution of
equation (8) is obtained from the final sum of the main oscillation and higher har-
monics. [5] This statement allows to represent the function w in the following
form:

"= Zleys (x)exp(isor) , )
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where y,(x) — unknown complex functions of coordinates of dimension, ® -
known angular frequency, i — imaginary unit, and S — harmonic value.

Considering the system linearity, the change of each harmonics s and the defi-
nition of the disturbance form there can be obtained the sum of each component
related to the given point. Substituting (9) into (8), for s™ harmonics we have

v, +Aly, =0, (10)

where the prime means differentiation along coordinate x, and value A, is defined
from the solution of the following disperse equation:

%s ws—i 8“2
A2 =20 PR (11)
s Rh .
I-p—wc,

2
€y

Dividing equation (11) into real and imaginary parts and introducing the
indications

L) s 3l
. cg A = Cg pr2
Os Rh 5 o ’ s Rh ) 5
I-p— s l-p— s
2¢, 2¢,
we get
A2 =2, —iky, . (12)

Solving disperse equation (12), choosing the root Im A<O and using the
known formula of calculation of square root from a complex value, we find:

7\" = 6()s _ials (13)

s

In (13) it is assumed that
1

1
- - 1
1 2 1 2 =
803 = {E(}“Os + m)} ° Sls = {E(ms _}“Os )} > and mg = (}"é\ +}“12A' )2 :

. . . . . SO
With this the velocity of propagation of s™ wave is defined as —, and §,, —
Os
damping coefficient.
4 Derivations and numerical analysis. Firstly, it should be mentioned that
the common solution to the equation (10) is written in the form:
+Be™", (14)

—ik x

yy=Ae
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where A, and B, — constants of integration determined from the boundary condi-
tions to be defined further. Now for function w and p we may write

w=3" {ae™" +Be™ fexplisar) (15)

and

E . .
p= { 2 b _ p.ho? } Zf:l{Ase_'k»*x + Bse'l»*x }exp(is(x)t) . (16)

I-vv, R2

Both of these results can be derived from formulas (7) and (9), in case we con-
sider in them the dependence (14).
Now it is remained to define the velocity of liquid flow. For this we state

“= f:[Us (x)exp(iswr) . an

With this in mind and using the equation (5), after elementary conversions it is
possible to find

E ) )
u:—i{ 2 L—p*hwz}Zfl%(—Ase_'W+Bse'l»*x)exp(is(x)t), (18)

s
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I = =Py £ 2
PR

is a hydraulic impedance of s harmonic. The value of 8l/R* characterizes hydrau-
lic resistance, and s® — induction. Hence it follows that hydraulic resistance linear-
ly depends on W, and induction — on harmonic s.

Now, let’s describe pressure propagation, flow velocity and displacement for a
straight tube of length . For this let’s formulate the following boundary condi-
tions. The pressure changes according to the law

Zf:lpos exp(ist) (19)

at x = 0 and for simplicity it equals to zero at x=1. In (19) po, — known empirical
constants. Due to the written boundary conditions, the obtained system of algebra-
ic equations is necessary for definition of A, and B,. It has the following form:

a(As +Bs)= Pos»

Ase_il*l +Be™ =0 s




Hence it follows that
il » ol
and B, =i—2"— .
2asin Al

Using these equations in (15), (16) and (18), we find

= Pos€
2asinA ]

s

l «s sinA, (x—1) ) .
W(x,t):—aZX:lpoxTwexp(ls(l)t) . (20)
s sinA, (x—1) )
p(x1)= —szlpox Twexp(ls(ot) ; 21
s A cosh, (x—1) ‘
u(x,t)= Zx:ll_:\vpm Wexp(ls(ot) . (22)

Consecutive correlations for the limited case of semi-infinite tube can be ob-
tained through calculation of limit of the expressions (20)—(22) at [/ approaching
infinity. It may be shown that at Im A < O (that was mentioned earlier) and

. Sin}“\' (x_l) —ik x
lim——==—-¢ """ ;
I-e  sinl

. COS}“\' (x_l) . =ik x
lim———==—je ™

>

I»e  sinA ]
s

then from the above mentioned formulas it follows that the related solution can be
written as follows:

1 .
w(x,t)= —ZS lpo\,e_'k*x exp(ismt) ; (23)
o s= s
p(x,1)= \Sv:lp()‘\,e_il»*x exp(iswt) ; (24)
. S }“\' —ik,x .
u(x,r)= zzlel—‘pme ¥ exp(isor) . (25)

It should be noted that due to the system linearity, the physical meaning has
the true parts of the built solution.

Let’s move forward to calculation of the amplitude of pressure Ip,l for the s™
harmonic. We have

—ilx isot

Py = Do e 4

hence, taking into account (13) and considering Euler’s formula we may write

Py = Po,e 0 e s {cos(sar) +isin(sor)} .
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From the previous equation it is easy to get for pressure amplitude that
-5
|ps| =p()se . . (26)

Following the equation (23) for the amplitude of displacement we may write

| = Los odur, 27)

[wl ==

Doing the same we can calculate the amplitude of flow velocity, that for the s™
harmonic has the following appearance:

| | — =8,x
Ug| = DPos€

(28)

Here the coefficients aos, a1 and a,, to be written down as follows:

64u° 8
oy = !j +p§52(’02’ Oy = 58
R ’ R

1s +pf5(‘)50s > Oy = % 8y, _pfswsls .

5 Results and Conclusions. For estimation of the result, received form con-
sidering an “amendment” to the dynamic viscosity coefficient, we are interested to
see the influence of heterogeneity. In order to get a numerical result, we assume
that the tube is orthotropic. The numerical experiment with the following system
parameters is proposed R =0.5 cm; w=0.1 g/cm - sec; h=0.2 cm; p;=p= = 1 g/lem?;
®=2nsec’!; x=0; E,=4- 10° dyn/em?; v; = 0.1; v» = 0.3; po1 = 1.4 - 10° dyn/cm?;
pos =2.4 - 10* dyn/cm?.

Table 1 shows the values of wave velocity depending on concentration ¢, at
s=1 and s=3, when an effective viscosity is calculated through the formula (1).
Table 2 shows the values for the damping coefficient depending on ¢. Table 3 for
the same case shows the dependence of velocity amplitude of mixture flow for
various volumetric concentrations.

Table 1 — The values of wave velocity depending on concentration ¢

¢, cm/sec
s 0=0 0=0.1 0=02 0=03
882 855 824 793
3 895 889 905 901

Table 2 — The values for the damping coefficient depending on ¢

; 8, sec!
0=0 0=0.1 0=0.2 0=03
0.0017 0.0025 0.0038 0.0039
3 0.0018 0.0026 0.0035 0.0043
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Table 3 — Velocity amplitude of mixture flow for various volumetric concentrations

N

‘ Uy ‘ , cm/sec

0=0 0=0.1 0=0.2 0=03
1 1.43 1.34 1.25 1.17
3 0.26 0.25 0.25 0.24

Based on received numerical calculations we can make the following conclusions:

— the wave velocity and the amplitude of flow velocity decrease with the in-
crease of ¢;

— the biggest increase against concentration ¢ is observed for the coefficient 9§,
(almost two times more);

— with the increase of harmonics the wave velocity increases.
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O. A. ACJIAHOB

Asepbatioscanckuli mexuuueckuti yHusepcumem, baky, Azep6aiioocan

O PACIIPOCTPAHEHHMH BOJIH B YIIPYTOM TPYBKE,
COJIEPKAIIEW TETEPOTEHHYIO )KUJIKOCTh

BeinonHeHo pelieHue OJHOMEPHOH 3ajaud O PacIpOCTPAHEHUHM TapMOHUYECKHX BOJH
B OPTOTPOITHOI YNpyroi TpyOke, cojepxalieil HEOTHOPOAHYIO HEC)KUMAEMYIO >KHJIKOCTb,
peosoryueckoe IOBEACHHE KOTOpOHl omuchiBaeTcs Mojenbro Makcemwra. YucneHHO mpo-
aHAIM3MPOBAHO BIIUSHUE KOHLEHTPALMM BKJIIOYEHUN HA BOJHOBBbIE XapaKTEPUCTHKH TS
cilydass pacIpOCTPaHEHUs JUIMHHBIX CTAllUOHApHBIX BOJIH B HEOJHOPOAHOW >KUIKOCTH,
TeKylleil B ynpyroi TpyOKe IEepeMEHHOIO OKpPYIJIOrO CEUeHUs, CBOWCTBA KOTOPOH COOT-
BETCTBYIOT JIMHEHHOM Bs3koynpyroil mozxenu ®doiixra. Pemenue 3Toil 3amauu onpenenser-
csl CHHTYJSIpHOH KpaeBoi 3amaueit llltypma — JlmyBmms. Ilpemmonaraercsi, 4to TpyOka
KECTKO 3aKpeIlIeHa B OKPYXKAIOLIeM IPOCTPAaHCTBE MU, CIEAOBATEIbHO, €€ IPOAOIbHOE
CMEIIEHHE PaBHO HYIIO. PaccMOTpeHsb! ciiydyan KOHEUHBIX U ITOIyOEeCKOHEYHBIX TPYOOK.

KnroueBble c0oBa: pacrpoCTpaHeHHE BOJH, YIpyras TpyOKa, HEOIHOPOIHAS KHI-
KOCTb, FAPMOHMYECKUE BOJIHBI, BA3KOYIPYTOCTh, FEMOANHAMUKA.
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