

Рисунок 2 – Схема подмостей ПД-5,2: *а* – вид в собранном положении; *б* – вид в верхнем положении

На данный момент есть в наличии следующие компоненты проекта бизнес-плана: основные цели и задачи проекта, коммерческий раздел проекта, технический раздел проекта, экологический раздел проекта, социальный раздел проекта, основные этапы реализации, финансово-экономический раздел проекта, основные показатели по рассчитываемому проекту (расчеты выполнены в программе «PROJECT EXPERT (Standard) – 4.2»).

Получено 22.04.2007

ISBN 978-985-468-405-5. Механика. Научные исследования и учебно-методические разработки. Вып. 2. Гомель, 2008

УДК 531.26.262

В. М. ХВИСЕВИЧ, А. И. ВЕРЕМЕЙЧИК Брестский государственный технический университет, Брест

ПОСТРОЕНИЕ ДИСКРЕТНЫХ АНАЛОГОВ ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ДЛЯ ДВУХМЕРНЫХ НЕСВЯЗАННЫХ НЕСТАЦИОНАРНЫХ КРАЕВЫХ ЗАДАЧ ТЕРМОУПРУГОСТИ

В статье рассматривается двухмерная несвязанная задача нестационарной термоупругости однородных изотропных тел. Построены граничные интегральные уравнения, на основании которых с применением метода коллокаций разработаны дискретные аналоги интегральных уравнений. Определены коэффициенты полученных линейных алгебраических уравнений с использованием квадратурных формул Гаусса. Решение краевых и начально-краевых задач нестационарной термоупругости для конструктивных элементов произвольной формы с любыми граничными условиями возможно только численным путем. Для этого необходимо аппроксимировать не только геометрию области, но и входящие в граничные интегральные уравнения (ГИУ) краевые функции. В данной работе для решения такого рода задач предлагается метод граничных элементов [1, 2], получивший широкое распространение благодаря возможности его эффективной реализации на ЭВМ. Так как в случае нестационарной задачи граничные функции зависят от времени, возникает необходимость их аппроксимации не только по границе, но и по времени.

Дискретизация границы области осуществляется с помощью треугольных или четырехугольных граничных элементов для трехмерных задач или одномерных конечных элементов различной формы для двухмерных задач с помощью функций формы. Порядок аппроксимации граничного элемента определяется в зависимости от сложности решаемой задачи. Декартовы координаты граничного элемента выражаются через координаты угловых точек, принадлежащих границе, и функции формы от локальных координат. Дискретный аналог \overline{S} границы S должен совпадать с \overline{S} в узловых точках. Аппроксимация по времени граничных функций осуществляется с помощью интерполяции относительно узлов по элементам t^{f} (f = 1...N) на требуемом интервале времени (t^{If}, t^{2f}).

Обозначим одну из граничных функций (перемещение, поверхностная нагрузка, температура или тепловой поток) через $\varphi(y, \tau)$. Проводя интерполяцию, получаем выражение интерполирующей функции (интерполянта) Лагранжа декартовых координат на \overline{S}_q (q = 1...M) и граничные функции на граничном элементе \overline{S}_q и на интервале времени (t^{lf} , t^{2f}) в следующем виде:

$$y_i(\xi) = \sum_{\beta=1}^{M^*} N_{\beta}(\xi) y_i^{\beta q}$$
; (1)

$$\varphi(y,\tau) = \sum_{\beta=1}^{M^*} \varphi(y^{\beta q}, t) N_{\beta}(\xi); \qquad (2)$$

$$\varphi(y,\tau) = \sum_{\alpha=1}^{N^*} \varphi(y,t^{\alpha f}) \psi_{\alpha}(\tau), \qquad (3)$$

где $N_{\beta}(\xi)$ – функция формы ($\beta = 1...M^*$ – номер узла в граничном элементе) относительно граничного элемента \overline{S}_q , $\psi(\tau)$ – функция формы относительно

временного элемента ($\alpha = 1...N^*$). Функции формы определяются в зависимости от вида граничного элемента в соответствии с рекомендациями [1]. В случае решения двухмерных задач функции формы граничного элемента определяются следующим образом:

– для квадратичного одномерного элемента:

$$N_{1}(\xi) = \frac{1}{2}\xi(\xi - 1);$$

$$N_{2}(\xi) = (1 - \xi)(1 + \xi);$$

$$N_{3}(\xi) = \frac{1}{2}\xi(\xi + 1), -1 \le \xi \le 1;$$

- для линейного одномерного элемента:

$$N_{1}(\xi) = \frac{1}{2}(1-\xi);$$

$$N_{2}(\xi) = \frac{1}{2}(1+\xi), -1 \le \xi \le 1.$$
(4)

Функция формы временного элемента определяется по следующим формулам:

- для квадратичного временного элемента:

$$\begin{split} \psi_1(\tau) &= 2\overline{\tau}^2 - \overline{\tau} - 1; \\ \psi_2(\tau) &= 4\overline{\tau} (1 - \overline{\tau}); \\ \psi_3(\tau) &= \overline{\tau} (2\overline{\tau} - 1); \\ t^{1f} &\leq \tau \leq t^{2f}; \qquad \overline{\tau} = \frac{\tau - t^{1f}}{t^{2f} - t^{1f}}; \qquad t^{1f/2} = \frac{t^{1f} + t^{2f}}{2}; \end{split}$$

- для линейного временного элемента:

$$\begin{split} \psi_1(\tau) &= \frac{t^{2f} - \tau}{\Delta t^f}; \\ \psi_2(\tau) &= \frac{\tau - t^{2f}}{\Delta t^f}; \quad t^{1f} \leq \tau \leq t^{2f}. \end{split}$$

Если предположить, что $t^{2f} = 1$ и $t^{1f} = 0$ – в этом случае ($0 \le \tau \le 1$), получим следующие выражения для функций формы:

- для квадратичного временного элемента:

$$\psi_1(\tau) = 2\tau^2 - 3\tau + 1; \psi_2(\tau) = 4\tau(1-\tau); \psi_3(\tau) = \tau(2\tau-1);$$

- для линейного временного элемента:

$$\psi_1(\tau) = 1 - \tau;$$

$$\psi_2(\tau) = \tau.$$

Выбор функции формы осуществляется так, чтобы обеспечить междуэлементную непрерывность граничных функций.

В случае двухмерной области дифференциал границы *dS* представляет собой бесконечно малый отрезок, длина которого

$$dS = |I| d\xi$$
,

где |I| – якобиан преобразования локальных координат в глобальные $(-1 \le \xi \le 1)$:

$$\left|I\right| = \left|\frac{dy}{d\xi}\right| = \sqrt{\left(\frac{dy_1}{d\xi}\right)^2 + \left(\frac{dy_2}{d\xi}\right)^2}$$

Якобиан легко вычислить в случае линейных функций форм. Для линейного одномерного элемента, из (4) получим:

$$\frac{dN_1(\xi)}{d\xi} = -\frac{1}{2}; \quad \frac{dN_2(\xi)}{d\xi} = \frac{1}{2},$$

следовательно, $|I| = 0,5\Delta$, где Δ – длина граничного элемента.

Выражение (1) можно трактовать либо как преобразование на элементе \overline{S}_q координат ξ в декартовы прямоугольные координаты, либо как отображение безразмерного элемента (отрезка $-1 \le \xi \le 1$ в случае двухмерной задачи или квадрата в случае трехмерной) в плоскости $O\xi$ на элемент \overline{S}_q границы области S.

Формулы (2) и (3) можно распространить на четырехмерный вектор $\overline{\phi}$, компонентами которого могут быть перемещение, температура, поверхностные силы или тепловой поток:

$$\varphi(y,\tau) = \sum_{\beta=1}^{M^*} \overline{\varphi}(y^{\beta q},\tau) N_{\beta}(\xi); \qquad (5)$$

$$\varphi(y,\tau) = \sum_{\alpha=1}^{N^*} \overline{\varphi}(y,\tau^{\alpha f}) \psi_{\alpha}(\tau).$$
(6)

Исходя из того, что напряжения и тепловой поток определяются через производные от перемещений и температуры, а последние являются функцией координат точки, проводится согласованная аппроксимация следующим образом. Геометрия элемента описывается квадратичной функцией, перемещения и температуры – линейной, поверхностные силы и тепловые потоки – постоянной функцией координат. Преимуществом данного подхода является то, что при переходе от элемента к элементу сохраняется непрерывность граничных перемещений и температуры. Кроме того, имеется возможность описания разрывных поверхностных сил и теплового потока. Все аппроксимации границы и граничных функций должны удовлетворять условиям, полученным при построении граничных интегральных уравнений [3].

В методе граничных элементов наиболее часто для получения дискретных уравнений используется метод коллокаций и метод Бубнова-Галеркина. В данной работе предпочтение отдается методу коллокаций, благодаря чему при переходе к дискретным уравнениям погрешность численного интегрирования может проявляться лишь в результате приближенного вычисления интегралов, входящих в ГИУ.

При кусочно-линейной аппроксимации по времени $\varphi(y, t^{2f'}) = \varphi(y, t^{1f})$, f' = f - 1. Пусть $\overline{\varphi} = (\varphi_1, \varphi_2, \varphi_3, \varphi_4)$ – искомое решение ГИУ [3], которое приближенно можно представить в форме (5, 6). Выбирая в качестве узлов коллокации узлы интерполяции для $\overline{\varphi}$ и вычисляя интегралы в ГИУ с помощью формул численного интегрирования, получим дискретный аналог граничных интегральных уравнений нестационарных задач термоупругости для перемещений и температуры:

$$\frac{1}{2}u_{k}(x^{b},t_{F}) + \sum_{q=1}^{M}\sum_{\beta=1}^{M^{*}} \left[u_{i}(y^{\beta q},t_{F})T_{ik}^{b\beta q} - P(y^{\beta q},t_{F})u_{ik}^{b\beta q}\right] = (7)$$

$$= \sum_{f=1}^{N}\sum_{\alpha=1}^{N^{*}}\sum_{q=1}^{M}\sum_{\beta=1}^{M} \left[T(y^{\beta q},t^{\alpha f})Q_{k}^{*b\beta q\alpha f}(t_{F}) - Q(y^{\beta q},t^{\alpha f})T_{k}^{*b\beta q\alpha f}(t_{F})\right];$$

$$\frac{1}{2}T(x^{b},t_{F}) + \sum_{f=1}^{N}\sum_{\alpha=1}^{M}\sum_{\beta=1}^{M} \left[T(y^{\beta q},t^{\alpha f})Q_{*}^{b\beta q\alpha f}(t_{F}) - Q(y^{\beta q},t^{\alpha f})T_{*}^{b\beta q\alpha f}(t_{F})\right] = 0$$
(8)

где $u_{ik}^{b\beta q}$, $T_{ik}^{b\beta q}$, $Q_k^{*b\beta q\alpha f}$, $T_k^{*b\beta q\alpha f}$, $Q_*^{b\beta q\alpha f}(t_F)$, $T_*^{b\beta q\alpha f}(t_F)$ – коэффициенты дискретных уравнений, в случае двухмерных задач они определяются по формулам:

$$u_{ik}^{\beta bq} = \int_{-1}^{1} u_{ik} (y^{q}, x^{b}) N_{\beta}(\xi) I(\xi) d\xi;$$

$$\begin{split} T_{ik}^{\beta bq} &= \int_{-1}^{1} u_{ik} \left(y^{q}, x^{b} \right) N_{\beta}(\xi) I(\xi) d\xi \,; \\ Q_{k}^{*b\beta q\alpha f} \left(t_{F} \right) &= \int_{-1}^{1} N_{\beta}(\xi) \Biggl[\int_{t^{1f}}^{t^{2f}} Q_{k} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \Biggr] I(\xi) d\xi \,; \\ T_{k}^{*b\beta q\alpha f} \left(t_{F} \right) &= \int_{-1}^{1} N_{\beta}(\xi) \Biggl[\int_{t^{1f}}^{t^{2f}} T_{k}^{*} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \Biggr] I(\xi) d\xi \,; \\ Q_{*}^{b\beta q\alpha f} \left(t_{F} \right) &= \int_{-1}^{1} N_{\beta}(\xi) \Biggl[\int_{t^{1f}}^{t^{2f}} Q_{*} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \Biggr] I(\xi) d\xi \,; \\ T_{*}^{b\beta q\alpha f} \left(t_{F} \right) &= \int_{-1}^{1} N_{\beta}(\xi) \Biggl[\int_{t^{1f}}^{t^{2f}} T_{*} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \Biggr] I(\xi) d\xi \,; \end{split}$$

При вычислении коэффициентов используется точное интегрирование по времени и приближенное численное интегрирование по граничным элементам. Для численного интегрирования удобно использовать квадратурные формулы Гаусса [4]. Так как в задачах несвязанной термоупругости дискретные уравнения для температуры и теплового потока не содержат компонентов перемещений и поверхностных сил, то значительно упрощается процедура решения. Решение системы уравнений (7), (8) можно начинать с уравнения (8).

На основе интегральных представлений общих решений построены дискретные выражения для расчета напряжений и теплового потока, позволяющие определять значения компонентов напряжений и теплового потока в граничных точках через граничные значения температуры, теплового потока, перемещения и поверхностных сил. Они имеют следующий вид:

$$\begin{split} &\sigma_{mr}\left(x^{b},t_{F}\right) = -\gamma\delta_{mr}T\left(x^{b},t_{F}\right) - \sum_{f=1}^{N}\sum_{\alpha=1}^{N}\sum_{q=1}^{M}\sum_{\beta=1}^{M}\left[T\left(y^{\beta q},t^{\alpha f}\right)S_{mr}^{*b\beta q\alpha f}\left(t_{F}\right) - Q\left(y^{\beta q},t^{\alpha f}\right)V_{mr}^{*b\beta q\alpha f}\left(t_{F}\right) - P_{i}\left(y^{\beta q},t^{\alpha f}\right)D_{mr_{i}}^{*b\beta q\alpha f}\left(t_{F}\right) + u_{i}\left(y^{\beta q},t^{\alpha f}\right)S_{mr_{i}}^{*b\beta q\alpha f}\left(t_{F}\right)\right];\\ &Q\left(x^{b},t_{F}\right) = \sum_{f=1}^{N}\sum_{\alpha=1}^{N}\sum_{q=1}^{M}\sum_{\beta=1}^{M}\left[Q\left(y^{\beta q},t^{\alpha f}\right)Q_{*x}^{b\beta q\alpha f}\left(t_{F}\right) - T\left(y^{\beta q},t^{\alpha f}\right)P_{*}^{b\beta q\alpha f}\left(t_{F}\right) + P_{i}\left(y^{\beta q},t^{\alpha f}\right)\Pi_{i}^{b\beta q\alpha f}\left(t_{F}\right) - u_{i}\left(y^{\beta q},t^{\alpha f}\right)M_{i}^{b\beta q\alpha f}\left(t_{F}\right)\right], \end{split}$$

где коэффициенты дискретных уравнений определяются по следующим формулам:

$$\begin{split} S_{mri}^{\beta bq} &= \int_{-1}^{1} S_{mri} \left(y^{q}, x^{b} \right) N_{\beta}(\xi) I(\xi) d\xi \,; \\ D_{mri}^{\beta bq} &= \int_{-1}^{1} D_{mri} \left(y^{q}, x^{b} \right) N_{\beta}(\xi) I(\xi) d\xi \,; \\ S_{mr}^{\ast b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} S_{mr}^{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ V_{mr}^{\ast b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} V_{mr}^{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ D_{mri}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} D_{mri} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ S_{mri}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} S_{mri} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ Q_{\ast x}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} Q_{\ast x} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ P_{\ast}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ I_{i}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ I_{i}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ I_{i}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ I_{i}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ M_{i}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,; \\ M_{i}^{b\beta q\alpha f}(t_{F}) &= \int_{-1}^{1} N_{\beta}(\xi) \left[\int_{t^{1/f}}^{t^{2/f}} P_{\ast} \left(y^{q}, x^{b}, t_{F} - \tau \right) \psi_{\alpha}(\tau) d\tau \right] I(\xi) d\xi \,. \end{cases}$$

С применением полученных дискретных уравнений можно вычислить значения компонентов напряжений и теплового потока в точках области через граничные значения температуры, перемещения, теплового потока и поверхностных сил. Величины перемещения и температуры, поверхностной нагрузки и теплового потока во внутренних точках могут быть определены по заданным поверхностным нагрузкам и тепловым потокам и найденным значениям перемещений и температур при решении второй задачи, или по заданным граничным перемещениям и температурам и найденным поверхностным нагрузкам и тепловым потокам в случае первой задачи, с помощью простого интегрирования по поверхности и по времени.

С использованием метода коллокаций созданы дискретные аналоги граничных интегральных уравнений при решении несвязанных задач нестационарной термоупругости однородных изотропных тел, построены выражения для определения коэффициентов дискретных уравнений.

СПИСОК ЛИТЕРАТУРЫ

1 Крауч, С. Методы граничных элементов в механике твердого тела / С. Крауч, А. Старфилд. – М. : Мир, 1987. – 328 с.

2 Методы граничных элементов / К. Бреббия [и др.]. - М. : Мир, 1987. - 524 с.

3 Веремейчик, А.И. Граничные интегральные уравнения двухмерных нестационарных краевых задач несвязанной термоупругости / А. И. Веремейчик. // Актуальные проблемы динамики и прочности в теоретической и прикладной механике. – Минск : УП «Технопринт», 2001. – С. 99–102.

4 Демидович, Б.П. Основы вычислительной математики / Б. П. Демидович, И. А. Марон. – М. : Наука, 1966. – 664 с.

Получено 26.12.2007

ISBN 978-985-468-405-5. Механика. Научные исследования и учебно-методические разработки. Вып. 2. Гомель, 2008

УДК 625.032.3

Д. А. ЧЕРНОУС

Белорусский государственный университет транспорта, Гомель

ОЦЕНКА КОЭФФИЦИЕНТА СОПРОТИВЛЕНИЯ КАЧЕНИЮ АВТОМОБИЛЬНОГО КОЛЕСА В ПОКОЕ

На основе упрощенной модели автомобильного колеса получены расчетные оценки коэффициента сопротивления качению при трогании с места (в покое). Также получено соотношение для статической площади контакта автомобильного колеса с дорогой.

Введение. Одной из актуальных задач современной техники является оптимизация конструкционных параметров мобильных машин с целью снижения их энергоемкости, повышения надежности управляемости и комфорта-