УДК 539.3

Ю. П. СМИРНОВ, В. К. ТАРАСОВ

Тульский государственный университет, Россия

О РАСПРЕДЕЛЕНИИ НАПРЯЖЕНИЙ, ПЕРЕМЕЩЕНИЙ И ДЕФОРМАЦИЙ ВО ВРАЩАЮЩЕМСЯ ДИСКЕ

Вращающиеся детали, имеющие форму диска, очень часто встречаются в самых разнообразных машинах. Рассмотрена и проанализирована физически и геометрически линейная задача определения напряженно-деформированного состояния однородного вращающегося диска, выполненного из изотропного материала.

Анализ распределения напряжений во вращающихся телах произвольной формы – сложная задача, поэтому ограничимся рассмотрением случая вращения диска. Определяются радиальные σ_r и тангенциальные σ_{θ} напряжения, перемещения и деформации, возникающие в материале диска в результате действия центробежных сил. Задача строится в перемещениях и записывается в полярных координатах. Вследствие осесимметричности диска уравнение относительного равновесия частицы диска имеет вид [1]

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_{\theta}}{r} + r\omega^2 \rho = 0.$$
 (1)

Здесь *r* – радиус произвольной точки диска, ω – угловая скорость вращающегося диска, ρ – плотность материала диска.

Компоненты тензора деформации [1]

$$\varepsilon_r = \frac{du}{dr}, \qquad \varepsilon_{\theta} = \frac{u}{r},$$

где *и* – радиальное перемещение точек диска.

Соотношения между напряжениями и деформациями [1]

$$\sigma_r = \frac{E}{1-\mu^2} \left(\frac{du}{dr} + \frac{\mu}{r} u \right), \quad \sigma_{\theta} = \frac{E}{1-\mu^2} \left(\mu \frac{du}{dr} + \frac{u}{r} \right), \tag{2}$$

где *Е* – модуль Юнга; µ – коэффициент Пуассона.

Подставив соотношения (2) в уравнение равновесия (1), получим разрешающее дифференциальное уравнение в перемещениях

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} + \frac{r\omega^2\rho(1-\mu^2)}{E} = 0.$$

Решением этого уравнения является соотношение

$$u = C_1 r + \frac{C_2}{r} - \frac{r^3 \omega^2 \rho (1 - \mu^2)}{8E},$$

где *C*₁ и *C*₂ – константы интегрирования.

Строим выражения для напряжений

$$\sigma_r = \frac{E}{1-\mu^2} \left(C_1(1+\mu) - \frac{C_2}{r^2}(1-\mu) - \frac{r^2 \omega^2 \rho(1-\mu^2)(3+\mu)}{8E} \right), \tag{3}$$

$$\sigma_{\theta} = \frac{E}{1-\mu^2} \left(C_1(1+\mu) + \frac{C_2}{r^2} (1-\mu) - \frac{r^2 \omega^2 \rho (1-\mu^2) (1+3\mu)}{8E} \right). \tag{4}$$

Константы интегрирования C_1 и C_2 найдем, полагая равным нулю радиальное напряжение σ_r на внутреннем r_1 и внешнем r_2 радиусах диска:

$$C_{1}(1+\mu) - \frac{C_{2}}{r_{1}^{2}}(1-\mu) = \frac{r_{1}^{2}\omega^{2}\rho(1-\mu^{2})(3+\mu)}{8E},$$

$$C_{1}(1+\mu) - \frac{C_{2}}{r_{2}^{2}}(1-\mu) = \frac{r_{2}^{2}\omega^{2}\rho(1-\mu^{2})(3+\mu)}{8E}.$$
(5)

Из системы уравнений (5) следуют соотношения для констант

$$C_1 = \frac{\rho\omega^2}{8E} (1-\mu)(3+\mu)(r_1^2 + r_2^2), \quad C_2 = \frac{\rho\omega^2}{8E} (1+\mu)(3+\mu)r_1^2r_2^2$$

Подставив выражения констант в соотношения (3) и (4), найдем в окончательном виде формулы для напряжений

$$\sigma_r = \frac{\rho\omega^2}{8} (3+\mu) \left(r_1^2 + r_2^2 - \frac{r_1^2 r_2^2}{r^2} - r^2 \right),$$

$$\sigma_\theta = \frac{\rho\omega^2}{8} (3+\mu) \left(r_1^2 + r_2^2 + \frac{r_1^2 r_2^2}{r^2} - r^2 \frac{1+3\mu}{3+\mu} \right)$$

Анализ формул для напряжений. Построим графики распределения напряжений по радиусу. Графики строятся с точностью до множителя $\rho \omega^2/8$, во всех случаях величина $r_2 = 1$, а коэффициент Пуассона μ может принимать значения от 0 до 0,5.

Численный анализ напряжений показывает, что оба напряжения являются растягивающими. Тангенциальные напряжения возрастают с уменьшением расстояния от оси диска. Радиальные напряжения в любой точке всегда не больше тангенциальных. Радиальное напряжение равно тангенциальному в единственной точке – центре диска (это имеет место, если в диске нет отверстия). Для сплошного диска центральная точка является самой нагруженной. Диск с исчезающе малым отверстием в центре является концентратором тангенциальных напряжений. Для диска с малой разностью радиусов (тонкое кольцо) радиальные напряжения существенно меньше тангенциальных. В примерах на рисунках 1–3 ($r_1 = 0,9$) радиальные напряжения на два порядка меньше тангенциальных. С увеличением коэффициента µ радиальные напряжения в пряжения возрастают в любой точке диска. С другой стороны, при увеличении µ тангенциальные напряжения возрастают во внутренней области диска и снижаются во внешней.

Рисунок 1 – Графики тангенциальных напряжений для диска с отверстием

напряжений для сплошного диска

Из приведенного анализа следует, что внутренняя область вращающегося диска во всех случаях нагружена инерционными силами в большей мере, нежели внешняя.

Анализ перемещений. Подставив константы интегрирования в формулу для радиальных перемещений точек диска, получим

$$u = \frac{\rho \omega^2}{8E} \left((1-\mu)(3+\mu)(r_1^2+r_2^2)r + (1+\mu)(3+\mu)\frac{r_1^2r_2^2}{r} - (1-\mu^2)r^3 \right).$$

В долях множителя $\rho \omega^2 / (8E)$ построим графики перемещений для случаев с различными значениями внутреннего радиуса r_1 и коэффициента μ , во всех случаях считается $r_2 = 1$ (рисунки 4–5).

Рисунок 5 – Графики перемещений для сплошного диска

Приведенные графики показывают, что с увеличением r_1 радиальные перемещения точек возрастают по всему радиусу. Начиная с некоторого значения r_1 , радиальные перемещения точек диска во внутренней области больше, чем во внешней (*u* монотонно снижается по мере увеличения *r*) (см. рисунок 4, *a*). При меньших значениях r_1 имеют место два экстремума функции u(r), вблизи внутреннего r_1 и внешнего радиусов r_2 диска. С увеличением µ увеличивается перемещение точек во внутренней области диска и уменьшается во внешней (см. рисунок 4, δ). Для сплошного диска увеличение коэффициента Пуассона µ снижает перемещения точек.

Анализ деформаций. Подставив формулу для радиальных перемещений точек диска в соотношения для деформаций, получим:

$$\varepsilon_r = \frac{du}{dr} = \frac{\rho\omega^2}{8E} \left((1-\mu)(3+\mu)(r_1^2+r_2^2) - (1+\mu)(3+\mu)\frac{r_1^2r_2^2}{r^2} - 3(1-\mu^2)r^2 \right),$$

$$\varepsilon_\theta = \frac{u}{r} = \frac{\rho\omega^2}{8E} \left((1-\mu)(3+\mu)(r_1^2+r_2^2) + (1+\mu)(3+\mu)\frac{r_1^2r_2^2}{r^2} - (1-\mu^2)r^2 \right)$$

В долях множителя $\rho\omega^2/(8E)$ построим графики деформаций для случаев с различными значениями внутреннего радиуса r_1 и коэффициента μ , во всех случаях считается $r_2 = 1$.

Рисунок 6 – Графики радиальных деформаций: $a - \mu = 0.5$; $6 - \mu = 0.3$; $B - \mu = 0$

Графики на рисунках 6, *а*–*в* показывают, что радиальные деформации $\varepsilon_r(r)$ могут быть знакопеременными и что $\varepsilon_r(r)$ существенно зависят от коэффициента Пуассона μ . С увеличением μ радиальные деформации смещаются в отрицательную сторону. При $\mu = 0$ радиальные деформации оказываются неотрицательными. В знакопеременных случаях точки с отрицательными значениями ε_r располагаются вблизи внутреннего и внешнего радиусов диска.

На рисунке 7 приведены графики тангенциальных деформаций $\varepsilon_{\theta}(r)$. Тангенциальные деформации существенно зависят от коэффициента Пуассона µ. С увеличением µ деформации ε_{θ} увеличиваются в окрестности внутреннего радиуса и снижаются с другой стороны. Для сплошного диска увеличение µ повышает ε_{θ} при всех значениях радиальной координаты.

Рисунок 7 - Распределение тангенциальных деформаций

СПИСОК ЛИТЕРАТУРЫ

1 **Тимошенко, С. П.** Теория упругости / С. П. Тимошенко, Дж. Гудьер. – М.: Наука, 1975. – 576 с.

Y. P. SMIRNOV, V. K. TARASOV

ON PRESSURE, DEFORMATION AND DISPLACEMENT DISTRIBUTION IN THE ROTATING DISK

It is considered and analyzed physically and geometrically linear problem of determining the strain-stress condition of the homogeneous rotating disk made from an isotropic material.

Получено 25.04.2012