UDC 532.5

G. VELASCO-HERRERA, C. A. G. PEREZ-MORENO, O. W. VAZQUEZ-ESTRADA

Universidad Nacional Autónoma de México, México

INTEGRALS OF ENERGY AND AREA OF A SYSTEM OF SPINNING TOP

This work shows a model of spinning tops superimposed one over on the other that is represented by a system of two Lagrange gyroscopes, which are connected by elastic hinges, and with two supports on the ends. And we obtain the integrals of energy and area for this system.

Introduction

From ancient times until today, many engineering problems have been studied like systems of connected rigid bodies. A variety of instruments and devices in aviation, maritime, land, and space technology are analyzed as a system of rigid bodies. These types of systems are considered gyrostats, gyroscopic system, manipulators, bodies that spin on a string or a string suspension, wheeled vehicles, and among others. Also the system of rigid bodies has been successfully used for describing the dynamics of complex system like spacecraft [1].

The problem of motion of coupled rigid bodies, even when there are only two bodies, is much more complicated than the classical problem of motion of one body. The first goal of any research is to formulate equations of motion of the object. It would seem that the equations of motion can be apply to the standard methods of analytical dynamics, for example, write down the equations in the form of Lagrange equations. But often these equations are obtained as bulky that their use for solving problems is almost impossible. In this case, we need to write the motion equations in the form that will be the best suited for analysis that represent their characteristics of interest [2].

The work shows a system of two spinning tops superimposed one over the other. This model is represented by two of Lagrange gyroscopes, which are connected by elastic hinges, and with two supports on the ends on inertial and noninertial systems, and we obtain the integrals of energy and area of the system.

Description

The spinning tops superimposed one over the other, we represent like a system of two identical Lagrange gyroscopes $S_{i}(n=1,2)$ connected among themselves in the points O_{2} by elastic universal hinges (figure 1). And the point O_{1} of the body S_{1} is fixed, and the point O_{3} of body S_{3} moves only along a fixed axis Z going from O_{1} to O_{3}. The l_{1} and l_{2} are axes of symmetry, and C_{2} are the mass centers; h is distance between O_{i} and $O_{i+1}(i=1,2)$, and $h / 2=C$.

Figure 1 -Spinning tops (a), Lagrange gyroscopes (b)
We introduce a fixed coordinate system $O_{1} X Y Z$ (with unit vectors), whose axis is directed opposite to the gravity vector. And on each body S_{i}, we bind a moving coordinate system, with a basis $O_{i} e_{i}^{x} e_{i}^{y} e_{i}^{z}$, the vector \bar{e}_{i}^{x} is directed along the symmetry axis of the gyroscope $l_{i}(i=1,2)$. In addition, we assume that the axes of elastic universal joint are directed along the axes of vectors \bar{e}_{1}^{y} and \bar{e}_{2}^{y}. This system has three degrees of freedom.

Mechanical system admits two first integrals: the energy integral and area integral. We write the form of these integrals in the case when the position of the bodies S_{i} relative to the fixed angles $e_{x} e_{y} e_{z}$ is described by Krilov angles $\alpha_{i}, \beta_{i}, \gamma_{i}$. We consider that the system is in a gravitational field.

Integrals of Energy and Area

The kinetic energy of a system of two Lagrange gyroscopes $S_{i}(i=1,2)$, can be written as follows [3].

$$
\begin{equation*}
T=\frac{1}{2} \int_{V_{1}}\left(\bar{\omega}_{1} \times \bar{r}_{1}\right)^{2} \rho d V+\frac{1}{2} \int_{V_{2}}\left(\left[\bar{\omega}_{1} \times \overline{O_{2} O_{3}}\right]+\left[\bar{\omega}_{2} \times \bar{r}_{2}\right]\right)^{2} \rho d V, \tag{1}
\end{equation*}
$$

where \bar{r} - vector with initial point O_{i}, aimed at an arbitrary point P_{i} of the body $S_{i} ; \omega_{i}$ - absolute angular velocity of the body $S_{i} ; V_{i}$ - volume of the body $S_{i} ;$

Expressing the quantities in the integrals of (1) through the Krylov angles and integrating, we obtain the following form for the kinetic energy.

$$
\begin{aligned}
& 2 T=A_{1}^{\prime}\left(\dot{\beta}_{1}^{2}+\dot{\alpha}_{1}^{2} \cos ^{2} \beta_{1}\right)+B_{1}\left(\dot{\gamma}_{1}-\dot{\alpha}_{1} \sin \beta_{1}\right)^{2}+A_{2}\left(\dot{\beta}_{2}^{2}+\dot{\alpha}_{2}^{2} \cos ^{2} \beta_{2}\right)+ \\
& \quad+B_{2}\left(\dot{\gamma}_{2}-\dot{\alpha}_{2} \sin \beta_{2}\right)^{2}+2 m_{2} c_{2} h\left[\dot { \beta } _ { 1 } \dot { \beta } _ { 2 } \left(\cos \beta_{1} \cos \beta_{2}+\right.\right. \\
& \left.+\sin \beta_{1} \sin \beta_{2} \cos \left[\alpha_{1}-\alpha_{2}\right]\right)+\dot{\alpha}_{1} \dot{\alpha}_{2} \cos \beta_{2} \cos \beta_{1} \cos \left(\alpha_{1}-\alpha_{2}\right)+ \\
& \left.+\dot{\beta}_{2} \dot{\alpha}_{1} \sin \beta_{2} \cos \beta_{1} \sin \left(\alpha_{1}-\alpha_{2}\right)-\dot{\beta}_{1} \dot{\alpha}_{2} \cos \beta_{2} \sin \beta_{1} \sin \left(\alpha_{1}-\alpha_{2}\right)\right]
\end{aligned}
$$

where A_{i} - inertia moment main axes ($i=1,2$); $A_{1}^{\prime}=A_{1}+m_{2} h^{2}$ - inertia moment; m_{i} - mass body S_{i}, h_{i} - length of point O_{i} to O_{i+1}, c_{i} - length of center of mass body S_{i} to point O_{i+1} body S_{i+1}.

Because S_{1} and S_{2} are connected by a universal hinge, the system has a relation between angles the $\beta_{1}=\beta_{2}=\beta, \alpha_{1}=\alpha_{2}=\alpha$, we obtain a simple form for the kinetic energy

$$
\begin{gather*}
2 T=\left(A_{1}^{\prime}+A_{2}\right)\left(\dot{\beta}^{2}+\dot{\alpha}^{2} \cos ^{2} \beta\right)+B_{1}\left(\dot{\gamma}_{1}-\dot{\alpha} \sin \beta\right)^{2}+B_{2}\left(\dot{\gamma}_{2}-\dot{\alpha} \sin \beta\right)^{2}- \\
-2 m_{2} c_{2} h\left[\dot{\beta}^{2}\left(\cos ^{2} \beta-\sin ^{2} \beta \cos 2 \alpha\right)+\dot{\alpha}^{2} \cos ^{2} \beta \cos 2 \alpha+\right. \tag{2}\\
+2 \dot{\beta} \dot{\alpha}(\sin \beta \cos \beta \sin 2 \alpha] .
\end{gather*}
$$

For the potential energy of the system we have:

$$
\begin{gathered}
P=\mu_{1}\left(\bar{e}_{z} \cdot \bar{e}_{1}^{z}\right)+\mu_{2}\left(\bar{e}_{z} \cdot \bar{e}_{2}^{z}\right)+P_{2}\left(\psi_{0}^{2}\right) . \\
\mu_{1}=g\left(m_{1} c_{1}+m_{2} h\right), \quad \mu_{2}=g m_{2} c_{2} ;
\end{gathered}
$$

where
P_{2} is an even differentiable function, its argument ψ_{0} is the angle formed by l_{1} and $l_{2} \cdot P_{2}(0)=0, \psi_{0}$ is found through of $\cos \psi_{0}=\bar{e}_{1}^{x} \cdot \bar{e}_{2}^{x}$. And by $\beta_{1}=\beta_{2}=\beta$, $\alpha_{1}=\alpha_{2}=\alpha$, we obtain

$$
\begin{align*}
& P=\mu_{1} \cos \beta_{1} \cos \gamma_{1}+\mu_{2} \cos \beta_{2} \cos \gamma_{2}+P_{2}\left(\psi_{0}^{2}\right)= \tag{3}\\
& =\mu_{1} \cos \beta \cos \gamma_{1}+\mu_{2} \cos \beta \cos \gamma_{2}+P_{2}\left(\psi_{0}^{2}\right) .
\end{align*}
$$

The study system is conservative, so it admits the energy integral (2) and (3)

$$
E=T+P=\text { const. }
$$

As moment of external forces with respect to the vertical, passing through the fixed point O_{1}, is equal to zero, we have integral of area

$$
\bar{K} \cdot \bar{e}^{z}=\text { const } .
$$

where K - angular momentum,

$$
\begin{equation*}
K=\int_{V_{1}} \bar{r}_{1} \times\left(\bar{\omega}_{1} \times \bar{r}_{1}\right) \rho d V_{1}+\int_{V_{2}}\left(\bar{r}_{2}+\bar{s}_{1}\right) \times\left(\bar{\omega}_{2} \times \bar{r}_{2}+\bar{\omega}_{1} \times \bar{s}_{1}\right) \rho d V_{2} . \tag{4}
\end{equation*}
$$

We obtain (4) through of Krilov angles $\alpha_{i}, \beta_{i}, \gamma_{i}$ as follows

$$
\begin{aligned}
& k=A_{1}(\dot{\alpha} \sin \beta \cos \beta \cos \alpha-\dot{\beta} \sin \alpha)+B_{1} \cos \beta \cos \alpha\left(\dot{\gamma}_{1}-\dot{\alpha} \sin \beta\right)+ \\
& +A_{2}(\dot{\alpha} \sin \beta \cos \beta \cos \alpha+\dot{\beta} \sin \alpha)+B_{2} \cos \beta \cos \alpha\left(\dot{\gamma}_{2}-\dot{\alpha} \sin \beta\right)+ \\
& +m_{2} h c_{2}(-2 \dot{\alpha} \sin \beta \cos \beta \cos \alpha-\dot{\beta} \cos 2 \beta \sin \alpha)+ \\
& +m_{2} h^{2}[\dot{\alpha} \sin \beta \cos \beta \cos \alpha-\dot{\beta} \sin \beta]=\text { const }
\end{aligned}
$$

In this work a system of two Lagrange gyroscopes, connected by elastic universal joint is described; it represents a simple model of spinning tops superimposed one over on the other, we obtain integrals of energy and area. We obtained the integrals of area and energy to further study its stationary motions.

This work was partly supported by CCADET-UNAM and projects: IXTLI 101010 and University Network Space RUE-VEHG16052012-1, RUE-VEHG-16052012-2.

REFERENCES

1 Velasco Herrera, G. On the study of systems of rigid bodies / G. Velasco Herrera // Far East Journal of Applied Mathematics. - 2010. - Vol. 45. - Issue 1. - P. 43-52.

2 Wittenburg, J. Multibody systems: dynamics of systems of rigid bodies. 2 Ed. / J. Wittenburg. - Berlin: Springer, 2007. - 223 p.

3 Савченко, А. Я. Устойчивость движения систем связанных твердых тел / А. Я. Савченко, И. А. Болграбская, Г. А. Кононыхин. - Киев: Наукова думка, 1991. - 166 с.

Г. ВЕЛАСКО-ЭРРЕРА, Ц. А. Г. ПЕРЕЗ-МОРЕНО, О. В. ВАЗКЕЗ-ЭСТРАДА

ИНТЕГРАЛЫ ЭНЕРГИИ И ПЛОЩАДЕЙ ДЛЯ СИСТЕМЫ ВОЛЧКОВ

В работе рассмотрена модель наложенных друг на друга волчков, представленная системой двух гироскопов Лагранжа, которые соединены упругим шарниром и закреплены на других концах. Получены интегралы энергии и площадей для этой системы.

Получено 10.06.2012

ISSN 2227-1104. Механика. Научные исследования и учебно-методические разработки. Вып. 6. Гомель, 2012

УДК 629.44
И. А. ВОРОЖУН, А. В. ЗАВОРОТНЫЙ

Белорусский государственный университет транспорта, Гомель

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СПОСОБОВ КРЕПЛЕНИЯ ЯРУСОВ ТРУБ НА ПЛАТФОРМЕ

Рассмотрен способ размещения и крепления труб на железнодорожной платформе. В принятой схеме трубы каждого яруса крепятся в продольном направлении непосредственно к раме платформы. Реквизиты крепления труб содержат натяжные

