О ВЛИЯНИИ РАСПОЛОЖЕНИЯ ОПОР НА НИЗШУЮ ЧАСТОТУ ИЗГИБНЫХ КОЛЕБАНИЙ В БАЛОЧНЫХ МОДЕЛЯХ КУЗОВА ВАГОНА

В. В. ВАСИЛЕВСКИЙ, А. Н. СКАЧКОВ, А. А. ЮХНЕВСКИЙ АО НО «Тверской институт вагоностроения», Российская Федерация

В работе [1] при рассмотрении динамической модели кузова вагона электропоезда в виде балки Бернулли – Эйлера с эквивалентной изгибной жесткостью D = EJ и на абсолютно жестких опорах сделан вывод о том, что увеличение базы кузова l_6 в случае консолей одинаковой длины приводит к повышению низшей частоты изгибных колебаний. Такой результат был получен при сравнении низших частот для двух значений относительной длины базы $l_6 / l (l - длина кузова)$, равных 0,64 и 0,7. В общем случае этот вывод неверен. Рассматривая модель в виде балки с одинаковыми консолями l_{κ} и постоянной погонной массой μ , можно получить частотное уравнение в виде

$$\begin{bmatrix} kv_2 + \varepsilon \ v_1 + v_3 \end{bmatrix} \begin{bmatrix} kv_2 + \varepsilon \ v_1 - v_3 \end{bmatrix} = 0,$$
(1)

где $e = l_{\kappa}/l$, $\alpha^4 = \mu \omega^2 l^4/D$; $\beta = \alpha e$; $\gamma = \alpha - 2\beta$; $k = \sin\beta ch\beta - \cos\beta sh\beta$;

 $v_1 = \cos \gamma sh\gamma - \sin \gamma ch\gamma$; $v_2 = 1 - \cos \gamma ch\gamma$; $v_3 = sh\gamma - \sin \gamma$; $\varepsilon = 1 + \cos \beta ch\beta$.

Первый сомножитель (1) соответствует симметричным формам колебаний, второй – кососимметричным. Зависимость частотного параметра α от безразмерной длины консоли (показана

от безразмерной длины консоли \P_{-} показана на рисунке 1. Точки, использованные в работе [1], лежат правее экстремума e = 0,2245, который соответствует безразмерному параметру $\alpha l \approx 4,73004$, являющемуся низшим корнем частотного уравнения для безопорной схемы: $\cos \alpha l ch \alpha l - 1 = 0$. То есть при e = 0,2245 опоры оказываются в узлах свободной балки и перестают «мешать» ей проявлять свои экстремальные динамические качества.

Используя (1), можно построить аппроксимацию, связывающую частотный параметр α со статическим прогибом от распределенной нагрузки µg собственного веса (g – ускорение свободного падения) концевой (правой или левой) точки:

$$V_1 = \frac{\mu g l^4}{24D} \ 3e^4 + 6e^3\eta - e\eta^3 \tag{2}$$

и середины схемы:

$$V_2 = \frac{\mu g l^4}{384D} 5\eta^4 - 24e^2 \eta^2 ; \quad \eta = 1 - 2e .$$
 (3)

Если ввести безразмерные параметры

$$p = \left[3e + 6\eta \ e^2 - \eta^3 \right] e, \quad g = 5\eta^2 - 24e^2 \ \eta^2, \tag{4}$$

то из (2), (3) получится

$$p = \frac{24V_1D}{\mu g l^4}; \quad g = \frac{384V_2D}{\mu g l^4}.$$
 (5)

Введя функции

$$\varphi_i = a_{i1} + a_{i2}q + a_{i3}q^2 + a_{i4}q^3, \qquad (6)$$

построим аппрокс

симацию для
$$\alpha$$
 в виде $\alpha p_{,q} = \sum_{i=0}^{\infty} \varphi_{1} p^{i}$. (7)

Произведя тем или иным образом упорядочение неизвестных коэффициентов a_{ij} из (6), построим из них вектор а .Обозначив соответствующий этому упорядочению вектор сомножителей $p^{i}q^{j}$ (= $\overline{0,k}, j = \overline{1,4}$ через \overline{s} , потребуем

$$\sum_{n} \alpha_{n} - \overline{s}_{n}^{*} \overline{a}^{2} \to \min, \qquad (8)$$

где знак (*) обозначает транспонирование, а суммирование ведется по всем длинам консолей для e = [3, 0, 5]. Решая (8), найдем $\vec{a} : \vec{a} = \mathbf{M}^{-1} \sum_{n} \alpha_{n} \vec{s}_{n}$, $\mathbf{M} = \sum_{n} \vec{s}_{n} \vec{s}_{n}^{*}$.

Вычисления показали, что матрица М имеет квазигильбертову структуру, и аппроксимацию (7) не удается получить уже при k = 4. Однако, уже для k = 3 погрешность (7) лежит в пределах от -0,08 % до 0,04 %. Решения (7): $\alpha_1 = \phi_0 q$, $\alpha_2 = \phi_1 q + p\phi_2 q$, $\alpha_3 = \phi_3 q + p\phi_4 q + p^2\phi_5 q$ показано в таблице 1.

Таблица 1 – Коэффициенты a_{ii} функций φ_i

i	a _{i1}	a_{i2}	<i>a</i> _{i3}	a_{i4}	Погрешность, %
0	2,827443	17,21995	-51,60508	40,09381	-2,2; 5,3
1	3,108198	-10,12358	64,32363	18,04687	-0,24; 0,53
2	-21,19289	78,35605	-1263,904	1846,655	
3	3,140542	56,70123	271,2189	-1971,742	-0,08; 0,04
4	49,91955	-5223,928	33748,76	-32857,34	
5	-5828,617	-899,0873	-26059,94	61266,13	

На рисунке 2 сплошными линиями показаны зависимости $\alpha(p)$ и $\alpha(q)$ при точном решении, а кружочками – для аппроксимации $\alpha_3(p, q)$.

Рисунок 2 – Зависимости $\alpha(p)$ и $\alpha(q)$

Список литературы

1 Гучинский, В. В. Расчет частот собственных изгибных колебаний кузовов вагонов электропоезда с учетом податливости опор / В. В. Гучинский // Вестник УрГУПС. – 2019. – № 2(42). – С. 4–11.