что соответствует приложению к боковой поверхности оболочки давления, распределенного по об-

ласти $D = \left\{ (\alpha, z): -\frac{\beta}{2} \le \alpha \le \frac{\beta}{2}, -\frac{b}{2} \le z \le \frac{b}{2} \right\}$ и изменяющегося во времени по закону $P(\tau)H(\tau)$.

 $H(\tau) - \phi$ ункция Хэвисайда.

Нестационарный нормальный прогиб цилиндрической оболочки представляется в виде тройной свертки функции влияния G_w с поверхностным давлением $p(\alpha, z, \tau)$. Интегралы свертки берутся при помощи квадратурных формул методом прямоугольников:

$$w(\alpha, z, \tau) \approx \sum_{i=0}^{n} \sum_{j=0}^{m} \sum_{k=1}^{s} \frac{\beta}{n} \cdot \frac{b}{m} \cdot \frac{\tau}{s} \cdot G_{wijk}(\alpha, z, \tau) p\left(\frac{\tau}{s}k\right),$$

$$G_{wijk}(\alpha, z, \tau) = G_{w}\left(\alpha - \frac{\beta}{n}i + \frac{\beta}{2}, z - \frac{b}{m}j + \frac{b}{2}, \tau - \frac{\tau}{s}k\right).$$
(2)

Соотношение (2) позволяет исследовать пространственно-временные распространения нестационарных колебаний в неограниченной оболочке Кирхгофа – Лява при воздействии распределенной по боковой области в виде полосы нестационарной нагрузки.

Представленный подход к построению нестационарной функции прогиба при переходе к размерным величинам открывает возможности для анализа нестационарного напряженнодеформированного состояния протяженных цилиндрических оболочек с учетом различных вариантов анизотропии материала и закона распределения нестационарной нагрузки как по координатам, так и по времени.

Работа выполнена при финансовой поддержке РФФИ (проект № 19-08-00968 А).

Список литературы

1 Горшков, А. Г. Волны в сплошных средах / А. Г. Горшков [и др.]. – М.: ФИЗМАТЛИТ, 2004. – 472 с.

2 Tarlakovskii, D. V. Nonstationary 3D motion of an elastic spherical shell / D. V. Tarlakovskii, G. V. Fedotenkov // Mechanics of Solids. – 2015. – Vol. 50, no. 2. – P. 208–2017. – DOI: 10.3103/S0025654415020107.

З Локтева, Н. А. Нестационарная динамика тонких анизотропных упругих цилиндрических оболочек / Н. А. Локтева, Д. О. Сердюк, П. Д. Скопинцев // Динамические и технологические проблемы механики конструкций и сплошных сред : материалы XXVI Междунар. симпозиума им. А. Г. Горшкова. Т. 2. – М. : ООО «ТРП», 2020.

4 Сердюк, А. О. Нестационарная динамика тонких ортотропных упругих пластин / А. О. Сердюк, Д. О. Сердюк, Г. В. Федотенков // Динамическое деформирование и контактное взаимодействие тонкостенных конструкций при воздействии полей различной физической природы : тезисы докладов VII Междунар. науч. семинара. – М. : ООО ТР-Принт, 2018. – С. 108–109.

5 Сердюк, А. О. Нестационарные функции влияния для анизотропной пластины типа Кирхгофа – Лява / А. О. Сердюк // Ломоносовские чтения : тезисы докладов. – М. : Изд-во Московского университета. – 2019. – С. 204–205.

УДК 539.37

О ДЕФОРМИРОВАНИИ ТОРОИДАЛЬНОЙ ОБОЛОЧКИ СУПЕРЭЛЛИПТИЧЕСКОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

И. В. ЛУЦКАЯ, В. А. МАКСИМЮК Институт механики им. С. П. Тимошенко НАН Украины, г. Киев

Тороидальные оболочки благодаря своей компактности часто используются на транспорте как сосуды высокого давления. Стремление увеличить компактность привело к оболочкам некругового поперечного сечения. Расчеты напряженно-деформированного состояния (НДС) таких оболочек численными сеточными методами усложняется из-за так называемого явления мембранного запирания (locking). Оно проявляется в замедленной, но устойчивой, сходимости классических численных методов вследствие значительных изгибов при небольших растяжениях. Особенно замедляется сходимость в случаях значительной эллиптичности поперечного сечения оболочек [1] вследствие больших изгибов близи полюсов эллипса. Очевидно, в случае суперэллиптического [2] сечения цилиндрических, тороидальных и других оболочек расчеты НДС еще больше усложнятся. Суперэллипс (superellipse, кривая Ламе) представляет собой плоскую кривую, задаваемую в декартовых координатах уравнением

$$\left|\frac{x}{a}\right|^{n} + \left|\frac{y}{b}\right|^{n} = 1, \ n > 2.$$
(1)

При a = b = R кривая (1) становится суперокружностью (supercircle, squircle). С увеличением n суперэллипс будет приближаться к прямоугольнику с закругленными краями со сторонами a и b, а суперокружность – к квадрату со стороной R. Следует ожидать, что запирание в расчетах НДС таких оболочек проявится еще в большей степени.

Пусть срединная поверхность замкнутой тороидальной оболочки образована вращениями вокруг оси *Оу* суперэллипса (рисунок 1)

$$F(x, y) = \left| \frac{x - c}{a} \right|^n + \left| \frac{y}{b} \right|^n - 1 = 0,$$
(2)

где с – расстояние от центра поперечного сечения до оси вращения.

Рисунок 1 – Поперечное сечение замкнутой тороидальной оболочки

Срединная поверхность тонкой ортотропной оболочки отнесена [1] к криволинейной системе координат (s, θ, γ), в которой длина дуги суперокружности s отсчитывается от удаленной от оси вращения точки A (x = c + a, y = 0) до ближайшей к ней точке E (x = c - a, y = 0). Геометрические параметры оболочки толщиной h следующие: a/h = 100, b/h = 110, c/h = 200, n = 4, длина половины дуги суперокружности $s_k/h = 369$. Оси ортотропии материала с характеристиками $E_s = 15$ ГПа; $E_{\theta} = 12$ ГПа; $v_s = 0,12$ совпадают с координатными линиями принятой системы координат. Нагрузка – внутреннее давление p = 0,1 МПа. В точках A и E задавались условия симметрии.

Осесимметричное НДС оболочки рассчитано методом конечных разностей. При проведении вычислений половина дуги суперэллипса разбивалась на ряд узловых точек с равномерным шагом при помощи алгоритма [3] численной дискретизации плоской кривой (1). В таблице 1 для характерных точек тора $\tilde{s} = s/s_k$ приведены касательные перемещения $\tilde{u} = u/h$ и прогибы $\tilde{w} = w/h$ срединной поверхности, а также отнесенные к давлению *p* меридиональные (σ_s^+ , σ_s^-) и окружные (σ_{θ}^+ , σ_{θ}^-) напряжения на внешней (+) и внутренней (–) поверхностях оболочки.

Точка	\widetilde{s}	ũ	\widetilde{w}	σ_s^+	σ_s^-	$\sigma_{\theta}^{\scriptscriptstyle +}$	$\sigma_{\scriptscriptstyle \theta}^{\scriptscriptstyle -}$
Α	0	0	0,728	101	64	300	298
В	0,35	1,719	1,762	-1393	1860	-680	-555
С	0,5	0,071	28,05	2869	-2235	221	-246
D	0,65	-1,126	-0,130	-1783	2528	640	1297
Ε	1,0	0	0,095	157	149	-100	-99

Таблица 1 – Перемещения и напряжения в характерных точках тора, сечение – суперэллипс

Для достижения точности до трех значащих цифр в максимальных величинах необходимо было разбить половину дуги суперэллипса (n = 4) на 2000 узловых точек, тогда как в случае окружности (n = 2) достаточно было 200 точек [3], что является проявлением мембранного запирания. Вблизи «диагональных» точек *B* и *D* суперэллипса ($\tilde{s} = 0,35$; 0,65) и в «диаметральных» точках *C* ($\tilde{s} = 0,5$) возникают значительные моменты. Максимальными являются меридиональные напряжения (σ_s^+) на

внешней поверхности вблизи точки *C*. Там же имеет место максимальный изгиб. Вблизи «диагональных» точек *B* и *D*, в которых моменты достигают локальных максимумов, сечение разгибается.

Для сравнения в таблице 2 приведены аналогичные результаты для тора, поперечным сечением которого является суперокружность с параметрами: R/h = 100, c/h = 200, n = 4, $s_k/h = 351$.

Точка	\widetilde{s}	ũ	\widetilde{w}	σ_{s}^{+}	σ_s^-	σ_{θ}^{*}	$\sigma_{_{\theta}}^{}$
A	0	0	0,727	106	58	300	297
В	0,35	1,731	-2,02	-1318	1674	-1152	-916
С	0,5	0,807	30,64	2997	-2332	227	-260
D	0,65	-1,174	1,370	-1803	2617	432	1202
Ε	1,0	0	0,095	159	148	-99	-99

Таблица 2 – Перемещения и напряжения в характерных точках тора, сечение – суперокружность

Сравнительна небольшая (b/a = 1,1) эллиптичность поперечного сечения (n = 4) оболочки приводит (таблица 1) к незначительному перераспределению моментов вблизи «диагональных» точек. А максимальные напряжения (точка *C*) несколько уменьшаются, в отличие от случая простого (n = 4) кругового и эллиптического сечений при прочих равных параметрах [3].

Данная осесимметричная задача может дополнить ряд так называемых патологических тестов.

Список литературы

 Lutskaya, I. V. Modeling the Deformation of Orthotropic Toroidal Shells with Elliptical Cross-Section Based on Mixed Functionals / I. V. Lutskaya, V. A. Maksimyuk, I. S. Chernyshenko // Int. Appl. Mech. – 2018. – Vol. 54, no. 6. – P. 660–665.
 2 Akgün, G. Geometrically nonlinear transient analysis of laminated composite super-elliptic shell structures with generalized

diferential quadrature method / G. Akgün, H. Kurtaran // Int. J. Non-Linear Mech. – 2018. – Vol. 105. – P. 221–241.

3 Chernyshenko, I. S. On the Stress-Strain State of Toroidal Shells of Elliptical Cross Section Formed from Nonlinear Elastic Orthotropic Materials / I. S. Chernyshenko, V. A. Maksimyuk // Int. Appl. Mech. – 2000. – Vol. 36, no. 1. – P. 90–97.

УДК 539.3

ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ПЛАСТИНЫ ИЗ ПОЛИМЕРНОГО КОМПОЗИТА С внутренними повреждениями под действием статических и динамических нагрузок

М. И. МАРТИРОСОВ, Д. В. ДЕДОВА Московский авиационный институт (НИУ), Российская Федерация

А. В. ХОМЧЕНКО ПАО «Корпорация «Иркут», г. Москва, Российская Федерация

Механика разрушения полимерных композиционных материалов (ПКМ) достаточно сложна в силу анизотропии свойств монослоев, взаимного влияния напряжённо-деформированного состояния монослоев друг на друга, а также ввиду наличия повреждений.

Под повреждением будем понимать отклонение изделия от нормы, вызванное производством или эксплуатацией. Повреждение – нарушение исправного состояния изделия при сохранении его работоспособности. В авиации выделено пять категорий повреждений изделий из ПКМ в зависимости от требуемого уровня сохранения остаточной прочности, контролепригодности, интервала между осмотрами, условий появления повреждения, а также является или нет очевидным само событие, вызывающее повреждение.

Категория 1: Допустимое повреждение (порог контролепригодности в условиях эксплуатации и производства) менее того, которое может быть обнаружено с вероятностью не менее 95 % в процессе эксплуатации и на стадии производства. Обоснование допустимости повреждения Категории 1 включает демонстрацию сохранения уровня прочности не ниже расчётной в течение всего жизненного цикла изделия.

Категория 2: Повреждение, которое можно обнаружить при плановых или целевых осмотрах (с вероятностью не менее 95 %), проводимых через установленные в эксплуатационной документации интервалы (при визуальном и инструментальном контроле). Обоснование допустимости повреждения Ка-