КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ВОЗДЕЙСТВИЯ ШУМА ПРИ ОГРАНИЧЕНИИ ЕГО СПЕКТРА НА СИГНАЛ НЧ-ТРАКТА ЖЕЛЕЗНОДОРОЖНОЙ РАДИОСТАНЦИИ

В. Г. ШЕВЧУК, А. Ю. КУЛАЖЕНКО

Белорусский государственный университет транспорта, г. Гомель

А. И. ТИТОВ

Белорусская железная дорога, г. Гомель

Рассмотрим математическую модель шума, в которой имеется частота первой гармоники шума и гармоники, кратные этой частоте, причем амплитуда каждой гармоники является случайной величиной. Частоту первой гармоники шума примем равной $f_{\rm ml} = 25~\Gamma$ ц. Период повторения функции шума зависит от частоты первой гармоники и равен $T_{\rm ml} = 1/f_{\rm ml}$.

В интервале моделирования $T_{\text{мод}}$, меньше периода $T_{\text{ш}} = 0,004$ с, функцию зависимости уровня шума от времени можно считать случайной и непериодической. Гармоника шума с номером N соответствует частоте $f_{\text{ш}N} = f_{\text{ш}1} \cdot N$. Если принять количество рассматриваемых гармоник N = 500, то последняя рассматриваемая гармоника шума соответствует частоте $f_{\text{ш}500} = 25 \cdot 500 = 12500$ Гц.

Такой выбор диапазона учитываемых частот помех обусловлен амплитудно-частотными характеристиками железнодорожных радиостанций. В НЧ-тракте радиостанций частоты выше 3400 Γ ц подавляются с помощью активных фильтров. Соотношение между уровнем полезного сигнала и уровнем гармоник шумов частотой выше $10~\mathrm{k}\Gamma$ ц, как видно из амплитудно-частотных характеристик, например радиостанции РК-1Б, составляет более $60~\mathrm{d}Б$ (более $1000~\mathrm{pas}$) и с повышением частоты только увеличивается. Поэтому при анализе спектр шума можно ограничить частотой $f_{\mathrm{m500}} = 12500~\mathrm{F}$ ц. В рассматриваемой модели амплитуда каждой гармоники шума является случайной величиной, подчиняющейся нормальному закону распределения.

Компьютерная программа MathCAD имеет встроенное средство генерации случайных чисел, подчиняющихся нормальному закону распределения, которое принимает параметры и возвращает массив случайных чисел, подчиняющихся заданным параметрам

$$U_{\rm B} = rnorm (N, M, \sigma),$$

где N — количество возвращаемых случайных чисел, M — математическое ожидание случайной величины, σ — среднеквадратичное отклонение случайной величины.

Математическое ожидание уровня шума M=0, среднеквадратичное отклонение амплитуды i-й гармоники примем равным $\sigma=0,025$, количество возвращаемых случайных значений N=500.

График зависимости амплитуд гармоник шума от номера гармоники приведен на рисунке 1, a. График спектра шума $U_{\text{шр}}(t)$ в нулевой момент времени t = 0 – на рисунке 1, δ .

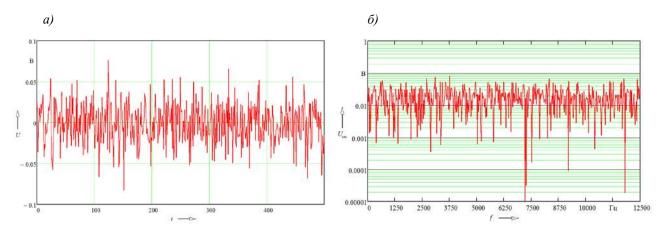


Рисунок 1 — Зависимость амплитуд гармоник шума от номера гармоники (a) и график спектра шума (δ)

На рисунке 2, a дан график зависимости результирующей амплитуды шума от времени $U_{\rm mp}$ (t), а на рисунке 2, δ – график изменения результирующего напряжения сигнала при наличии шума от времени $U_{\rm pes}$ (t).

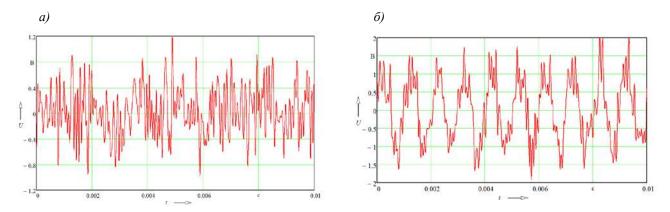


Рисунок 2 — Результирующая амплитуда шума (a) и изменение результирующего напряжения сигнала при наличии шума (δ)

На рисунке 3, a приведен спектр сигнала с шумом в диапазоне частот от 0 до 20000 Гц, на рисунке 3, δ – график сигнала с шумом, ограниченным по спектру до диапазона частот 300–3400 Гц в зависимости от времени.

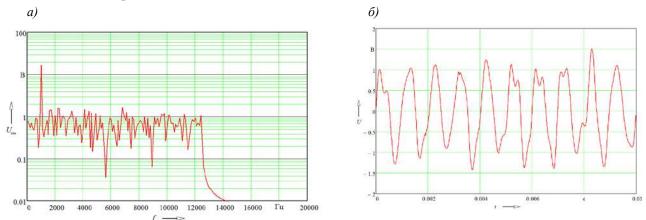


Рисунок 3 — Графики спектра сигнала с шумом в диапазоне частот 0— $20000 \, \Gamma \mu \, (a)$ и результирующего напряжения сигнала при наличии шума, ограниченного по спектру до диапазона частот 300— $3400 \, \Gamma \mu \, (\delta)$

Результаты расчетов параметров модели шума с ограничением по спектру приведены в таблице 1.

Таблица 1 – Результаты расчетов параметров модели шума

Параметры шума	М, В	$\sigma_{{\scriptscriptstyle \mathrm{B}}i}$	$U_{ m cp\ amn\pi},{ m B}$	$U_{ m действ},{ m B}$	ОСШ, дБ	КНИ, %
Спектр в диапазоне 100–12500 Гц	0,024716	0,395	0,313	0,395	5,05	55,900
Спектр в диапазоне 300–3400 Гц	0,000541	0,224	0,178	0,284	9,99	31,650

Из таблицы 1 видно, что математическое ожидание функции шума M при ограничении спектра остается стремящимся к нулю. Ограничение спектра уменьшает не только среднее амплитудное значение сигнала по модулю $U_{\rm cp\ amnn}$, но и действующее напряжение $U_{\rm cp\ amnn}$, улучшая тем самым отношение сигнал/шум ОСШ и значение коэффициента нелинейных искажений КНИ.

Рассмотренная модель имеет ограничение по времени моделирования и ограниченный спектр, представленный дискретным набором гармоник. Преимуществом данной модели является непрерывная функция зависимости уровня шума от времени. Недостатком модели является невозможность прогнозирования амплитуды шума на этапе задания параметров модели.