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FLOW STABILIZATION IN THE MULTILAYER VISCOELASTIC 
TUBES AT NO DISPLACEMENT BOUNDARY CONDITIONS 

Stability of the Poiseuille flow through the multilayer viscoelastic anisotropic tube at no 

displacement boundary condition at the outer surface of the tube is studied for different 

material parameters and flow regimes. Dependencies of the amplification rate of the most 

unstable fluid-based mode on the material parameters are obtained. It is shown that the flow 

can be stabilized by certain choice of viscous and elastic modules of the layers. The range 

of the parameters is wide enough to provide the flow stability at high variations of 

Reynold’s numbers. 

Introduction. Fluid-structure interaction (FSI) is an important factor in the 

biofluid flows like blood motion in the arteries, capillaries and veins as well as in 

the flows of other physiological fluids in different ducts and vessels, and flows in 

distensible tubes of biomedical and technical systems [1–4]. When the flow 

changes the values of the hydrodynamic pressure, wall shear stress, stress field 

and wall movement change either. Also there is a strong FSI between fluid and 

solid structure at their interfaces. FSI and instability of the fluid flows in the com-

pliant ducts have been thoroughly studied in application to the technical fluid-

conveying systems as well as to the motion of blood and other biofluids through 

the vessels or air flow in the airways [5]. When the flow instability causes the 

flow-limiting phenomena, self-exciting oscillations and noise generation can be 

observed. The wall oscillations are supported by the energy transfer from the fluid 

to solid at their interfaces [6].  

Flow-induced vibrations of arteries and veins can be detected by acoustic sen-

sors on the human body over the superficial blood vessels. The problem of the 
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pathological and innocent noises separation is an important problem of medical 

diagnostics [7]. Different problems of the flow instability in the blood vessels as 

multilayer tubes were studied using the mathematical model of the stationary in-

compressive axisymmetric flow in a circular three layer viscoelastic tube with no 

displacement [8] and no stress [9] boundary conditions at the outer surface of the 

tube. It was found that the unsteady fluid-based modes can be stabilized by the 

viscosity of the middle layer [8] and by the rigidity of the inner/outer layer [9]. In 

the both cases the sandwich-type material of the wall helps to stabilize the system. 

Stabilization of the turbulent flows by special design of the complicated coating is 

an important problem for many technical and biomedical systems and devices [10]. 

Firstly, the viscoelastic sandwich-type coatings were proposed for stabilization of 

internal and external flows based on experiments with dolphins [11]. The unique 

approach implemented by nature of the dolphin’s skin construction has been stud-

ied in numerous experiments. Due to its special structure, the skin allows to delay 

the laminar-turbulence transition and to preserve the laminar flow. That provides 

enormously low viscous friction of dolphin's body in comparison with manufac-

tured materials with similar geometry. The inspired by nature solution is still 

widely used for technical and biomedical applications [12, 13]. In this paper the 

stabilization problem for the layered anisotropic wall is studied and new ap-

proaches for the system stabilization at no displacement boundary condition at the 

outer surface of the wall are proposed. 

Problem formulation. Steady 

flow of viscous Newtonian liquid 

through a three-layer viscoelastic 

tube is considered (figure 1). The 

inner radius R, the length L and 

the thickness h = h1 + h2 + h3 of 

the tube are given, where h1, h2, h3 

are the thicknesses of the undis-

turbed layers. The outer layer is 

supposed to be tethered to some 

rigid areas and in that way the 

tube can be considered as three-layer viscoelastic coating at the inner surface of 

a rigid tube.  

The conservation equations for the fluid are the incompressible Navier-Stokes 

equations  
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and the mass and momentum conservation equations for the incompressible wall 

layers are 

Figure 1 – Coordinate system 

and 3d model of the tube 
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where v
r

 is the fluid velocity, 
)( j

u
r

 is the wall displacement, ρf and 
)( j

wρ  are the 

mass densities for the fluid and solid layers, p and p
(j)

 are the hydrostatic pres-

sures, σ̂  and 
)(ˆ jσ  are the stress tensors for the fluid and the wall layers, j = 1, 2, 3 

is the number of the layer.  

The constitutive relations for the wall layers are given by viscoelastic Kelvin-

Voight model: 
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where 
)( j

ik
A  is the matrix of elasticity coefficients, 

)( j
wµ  and 

)( jτ are viscosities 

and retardation times for the layers, },,,,,{
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the stress vector, and 
)( jε

r
 is the similar strain vector. It is supposed the rotations 

of the infinitesimally small elements can be neglected so the tensor time deriva-

tives in (3) can be replaced by partial derivatives. 

The following structure for the matrix of elasticity is accepted: 
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where Ej, Gj – Young and shear modulus for layer j; νij – Poisson ratio. 

When the Young and shear modules are distinct and 212112 / EEν=ν , 

313113 / EEν=ν , 323223 / EEν=ν  for each layer, the wall layers are orthotropic 

and possess different properties in the radial, tangential and longitudinal direc-

tions. When 321 EEE =≠  and 321 GGG =≠ , the layers are transversely isotropic 

possessing different properties in the radial direction and in the plane of the cylin-

drical surface. When EE =3,2,1 , ν=ν ij , 
)1(2

3,2,1 ν+
==

E
GG  the layers are 

isotropic. Note in the case the wall will be still anisotropic in the radial direction 

when materials of different Young modules are used for adjacent layers.  
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The boundary conditions are the continuity conditions for velocity and normal 

stresses at the fluid-solid interface, and the continuity conditions for the displace-

ments and stresses at the and solid-solid interfaces respectively: 

1
)1(

,: nn
dt

ud
Rr σ=σ==

rr
r

r
v ;         (5) 
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1 ,: nnuuhRr σ=σ=+=

rrrr
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32)3()2(
21 ,: nnuuhhRr σ=σ=++=

rrrr
.      (7) 

At the outer surface of the tube the no displacement condition is given at the 

outer surface 

0:
)3( =+= uhRr

r
.
         

(8) 

Solution of the problem. The Poiseuille flow in the rigid tube is considered as 

basic flow zP erVzr
rr

)(),,( =ϑv , where VP(r) is the well-known parabolic profile 

given by the Poiseuille formula. In the basic flow the wall displacements are sup-

posed to be equal to zero. The solution of the fluid-structure interaction problem 

(1)–(7) can be found as a superposition of the basic flow and small disturbance in 

the form of the normal mode: 
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where ,
orv  ,

)( or j
u  ,

o
p  

o)( j
p  are the amplitudes of the corresponding disturbances, 

k = kr + iki, s = sr + isi, si is the wave frequency, kr is the wave number, sr and ki 

are spatial and temporal amplification rates, n corresponds to the torsion waves, 

LPPzPzP outininP /)()( −−=  is the linear function determined by the inlet Pin 

and outlet Pout pressures.  

Substitution of (9) in (1)–(3) gives the corresponding system of ODE for the 

amplitudes ,
orv  ,

)( or j
u  ,

o
p  

o)( j
p as functions of the radial coordinate. The result-

ing system has been obtained in [8] and is not reproduced here for brevity. The 

stable and unstable modes can be computed from the dispersion relation obtained 

as condition 0det =M  where M  is the matrix of coefficients for the resulting 

system. The solution can be computed numerically. The corresponding procedure 

was developed for the isotropic layers [14] and then generalized for the anisot-

ropic layers [8]. 

Results and discussions. Computational results depend on the system geome-

try and rheology of the fluid and of the viscoeastic solid layers. It is known that 

the Poiseuille flow in rigid tubes becomes unstable at high Reynold’s numbers. 

Instability caused by any occasional disturbance may produce significant flow 

changes and transition to turbulence. Flows in the compliant tubes become unsta-
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ble at relatively small Reynold’s numbers that can be demonstrated by the Star-

ling’s reservoir [15]. At the no displacement boundary conditions the collapse is 

impossible and the layers wall can serve as absorber for the energy transferred by 

small disturbances that leads to stabilization. Different types of resins, polymers, 

viscoelastic gels, and other materials can be used as the efficient flow stabilizing 

layered coatings. In [5–10] the rheological parameters of normal human blood and 

arterial vessel walls have been used for computations of physiological flows. Vis-

coelastic parameters of biocomposites and of many technical resin-type materials 

are of the same order of magnitude, so the numerical results may be attributed to 

both medical and technical flows in ducts.  

The following model parameters have been used: E
*
=10

6
 Pa, 

3
kg/m1000=ρ=ρ ∗∗

wf , sPa1.0 ⋅=µ∗w , τ
*
 = 0.1 s

-1
, P

*
 = 10

4
 Pa, R

*
 = 0.01 m, 

L
*
 = 0.1 m, h

*
 = 0,1 R

*
. 

The behavior of the considered system is complex. It includes many stable 

fluid-based and solid-based modes with sr < 0 and one or two unstable fluid-based 

modes with sr > 0, i.e. any small disturbances can grow exponentially providing 

absolute instability of the system. The unstable modes disappear when stability of 

the empty three-layer tube is considered but they are taken into account when sta-

bility of the liquid column is studied. As it was proposed in [8], the situation when 

stability of the most unstable mode is increased and sr becomes smaller and then 

negative due to variation of some system parameters, first of all, rheological prop-

erties of the wall layers. As it was shown in [5–10], the system can be stabilized 

for quite different Reynold’s numbers (Re = 1–1000). It is important to take into 

consideration the variants of wide and quite narrow diapasons of Re for the stabi-

lization purposes in the systems working at some variety of Re. For instance, in 

the blood circulation systems the flow regimes vary from Re = 1000–5000 to 

Re = 0.01–1. Among biomedical devices (blood oxygenators, systems of external 

blood circulation, hemodialysis, etc.) and technical units (heat and mass exchang-

ers, fluid purification systems, separators of mixtures, etc.) there can be found 

devices with varying flow regimes.  

The influence of the system parameters on the flow stability is studied by the 

dependencies of temporal amplification rate of the most unstable mode Re(s) at 

different flow regimes. The dependencies Re(s) on viscosity of the layers are pre-

sented in figure 2. The viscosities can be varied for the three layers simultaneously 

(figure 2, a) keeping other rheological properties as characteristic values, i. e. the 

corresponding non-dimensional parameters are equal to 1. Then the viscosities of 

two layers are kept as 1, while the viscosity of the first (figure 2, b), second (figure 

2, c) or third (figure 2, d) layer takes the values from 1 to 3 (non-dimensional val-

ues). The parameters of the wall layers are 0
)( =µ j

w  (purely elastic), 4.0
)( =ν j

ik
, 

20
)(

1
=Ξ j

, 2
)(
3,2
=Ξ j

, where 
)(
3,2,1

jΞ  are non-dimensional Young modulus.  
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a) b)

c) d) 

 
—+— Re = 10; —×— Re = 20; — ∗ — Re = 30; — � — Re = 40 

Figure 2 – The dependence of Re(s) on the viscosity of the three layers µi (a), first µ1 (b), 

second µ2 (c) and third µ3 (d) layers at Re = 10, 20, 30, 40, 20
)(

1
=Ξ j

, 2
)(

3,2
=Ξ j

 

As it is shown in figure 2, a, the system can be stabilized by some increase of 

the all layers viscosities, but the stabilization will be lost at its further increase. A 

moderate increase up to µi = 0.1–0.7 stabilizes the system at Re = 10–50.  

In order to stabilize the system at higher Re numbers, it is necessary to in-

crease the viscosities, but the system returns to instability quite fast at µ i > 2. Any 

increase in viscosities of the first and third layers (figure 2, b, c) will not stabilize 

the system and at µi > 1 the system becomes more unstable at different Re num-

bers. The viscosity values of the second layer influence the system stabilization 

(figure 2, c). When µ2 > 0.5 the system becomes stable (Re(s) < 0) for Re=10–50. 

In that way the sandwich-type coatings composed of two elastic layers with one 

viscoelastic layer in the middle can be used for flow stabilization.  

At higher Re the results are qualitatively similar (figure 3). The system can be 

stabilized by the increase of viscosities of three layers (figure 3, a): from µi = 0.2 – 2 

at Re = 50 to µ i = 0.05 – 14 at Re = 200 (figure 3, a). Viscosity of the first 

(figure 3, b) and third (figure 3, d) layers independently influences the successful 

stabilizing for Re > 70 and Re > 180 accordingly. The second layer is the most 

perspective one for modification as it gives reliable stabilizing effect at any Re > 1. 
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a) b) 

c) d) 

—+— Re = 50; —×— Re = 100; — ∗ — Re = 150; — � — Re = 200 

Figure 3 – The dependence of Re(s) on viscosity of the three layers µi (a), first µ1 (b),  

second µ2 (c) and third µ3 (d) layers at Re = 10, 20, 30, 40, 2
)(

1
=Ξ j

, 20
)(

3,2
=Ξ j

 

Simultaneous changes of wall elasticity and viscosity also influence the system 

stability. Some typical results are presented in figure 4 for Re = 10. Any increase 

of the wall rigidity decreases the stabilizing µi diapasons and the reliable values 

are µ i = 0.2 – 0.5 (figure 4, a) that corresponds to moderate wall viscosities. When 

the wall rigidity increases the system may no longer be stabilized by viscosity of 

the inner (figure 4, b) and outer (figure 4, d) layers, and the middle layer only can 

be used for stabilization purposes. 

Success of the sandwich-type coating at different Young and shear modulus of 

the layers and the possibility to stabilize the system by the middle layer viscosity 

can be explained by its damping properties. Rigidity of the inner layer which is in 

contact with fluid provides better occasional flow perturbations energy transfer 

into the inner layer, and its damping properties depending on the viscosity and 

lead to energy dissipation and the perturbations quenching.  

Conclusions. The instability of the Poiseuille flow through the multilayer 

visco-elastic tube strongly depends on the rheological properties of the wall layers. 

The shear modulus and viscosities of the layers significantly influence the tempo-

ral amplification rate of the unstable fluid-based modes. Any increase of the sec-

ond layer viscosity causes the significant decrease of the amplification rate. The 

stabilizing sandwich-type coatings composed of two elastic layers with a viscoe-

lastic layer in the middle can damp the flow oscillations at wide variations of the 

fluid density, viscosity and Reynold’s numbers. 
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a)  b) 

c)  d) 

—+— G = 5; — ×— G = 10; — ∗ — G = 15; — � — G = 20 

Figure 4 – The dependence of Re(s)  on viscosity of the three layers µi (a), first µ1 (b), 

second µ2 (c) and third µ3 (d) layers at G = 5, 10, 15, 20, Re = 10  
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Э. ЧИСТИНА, М. ХАМАДИШ, Н. КИЗИЛОВА 

СТАБИЛИЗАЦИЯ ТЕЧЕНИЙ ПО МНОГОСЛОЙНЫМ ВЯЗКОУПРУГИМ 
ТРУБКАМ ПРИ УСЛОВИИ ЗАКРЕПЛЕНИЯ СТЕНКИ 

Исследуется стабилизация пуазейлевского течения жидкости по многослойной 
трубке при условии закрепления внешней поверхности для различных параметров мо-

дели и режимов течения. Проведены численные расчеты инкремента неустойчивости. 
Показано, что система может быть стабилизирована за счет определенного выбора вяз-

костей и модулей упругости слоев. Диапазон вычисленных параметров является доста-

точно широким для стабилизации системы при разных числах Рейнольдса. 
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FORMULATION OF THE CONSTRUCTION TOPOLOGICAL 
OPTIMIZATION PROBLEM FOR RAILWAY STRUCTURES 
CONSIDERING THE LIMITATIONS ON THE STRENGTH  

The main purpose of the paper is the development of the topological structural optimi-
zation scientific basis in accordance with the complicated optimization problems of rolling 


