УДК 539.215.9

Ю. П. СМИРНОВ, В. К. ТАРАСОВ Тульский государственный университет, Тула, Россия

ДВИЖЕНИЕ И РАВНОВЕСИЕ ТОЧКИ НА ВНУТРЕННЕЙ ШЕРОХОВАТОЙ ПОВЕРХНОСТИ ВРАЩАЮЩЕГОСЯ КОНУСА

Разработана механико-математическая модель движения частицы сыпучего материала по поверхности вращающегося вокруг вертикальной оси конуса. Проведен анализ условий относительного покоя рассматриваемой частицы в зависимости от угла наклона образующей конуса.

Транспортировка сыпучих грузов осуществляется как железнодорожным и автомобильным транспортом, так и по трубопроводам [1]. Существуют исследования, связанные с изучением статики сыпучих грузов и их динамики при перемещении в поступательно перемещающихся резервуарах и неподвижных трубопроводах [2–4]. В то же время движение и равновесие сыпучих грузов во вращающихся сосудах до настоящего времени не изучено. Целью представленной работы является разработка механико-математической модели движения частицы сыпучего груза во вращающемся сосуде и анализ условий ее относительного равновесия.

Примем частицу сыпучего груза за материальную точки M массы m, которая может двигаться или находиться в состоянии относительного покоя на внутренней шероховатой поверхности кругового конуса, вращающегося с заданной постоянной скоростью ω вокруг вертикальной оси, совпадающей с осью конуса (рисунок 1).

Рисунок 1 – Расчетная схема движения точки по подвижному конусу

Уравнения движения точки в цилиндрических координатах р, ф, z [5]

$$m(\dot{\rho}-\rho(\dot{\varphi}+\omega)^{2}) = -N\left(\sin\beta + f\cos\beta\frac{\dot{\rho}/\cos\beta}{\sqrt{\rho^{2}\dot{\varphi}^{2}+(\dot{\rho}/\cos\beta)^{2}}}\right),$$
(1)

$$m\frac{d}{dt}\left(\rho^{2}(\dot{\varphi}+\omega)\right) = -fN\rho\frac{\rho\dot{\varphi}}{\sqrt{\rho^{2}\dot{\varphi}^{2}+(\dot{\rho}/\cos\beta)^{2}}},$$
(2)

$$m\ddot{z} = -mg + N \left(\cos\beta - f \sin\beta \frac{\dot{\rho}/\cos\beta}{\sqrt{\rho^2 \dot{\phi}^2 + (\dot{\rho}/\cos\beta)^2}} \right).$$
(3)

Здесь ρ – расстояние точки от оси конуса; ϕ – угол относительного поворота радиус-вектора точки вокруг оси конуса; N – нормальная реакция конической поверхности; β – угол наклона образующей конуса относительно плоскости, перпендикулярной оси конуса; f – коэффициент трения скольжения материальной точки по конусу; g – ускорение свободного падения; точки над переменными обозначают дифференцирование по времени.

В уравнениях движения (1–3) использованы выражения модуля скорости скольжения точки по поверхности конуса (относительной скорости)

$$V_{\rm c} = \sqrt{\rho^2 \dot{\phi}^2 + \dot{\rho}^2 / \cos^2 \beta}$$

и направляющие косинусы силы трения относительно конуса

$$\cos\alpha_{\rho} = \frac{\dot{\rho}/\cos\beta}{\sqrt{\rho^{2}\dot{\phi}^{2} + \dot{\rho}^{2}/\cos^{2}\beta}}, \quad \cos\alpha_{\phi} = \frac{\rho\dot{\phi}}{\sqrt{\rho^{2}\dot{\phi}^{2} + \dot{\rho}^{2}/\cos^{2}\beta}}$$

(в осях, жестко связанных с конусом).

Подставим вертикальную составляющую ускорения точки

в уравнение (3)

$$m\ddot{\rho}\cdot\mathrm{tg}\beta = -mg + N\left(\cos\beta - f\sin\beta\frac{\dot{\rho}/\cos\beta}{\sqrt{\rho^2\dot{\phi}^2 + \dot{\rho}^2/\cos^2\beta}}\right).$$
 (4)

Обозначим выражения в скобках в правых частях уравнений (1) и (4) следующим образом

$$Q_1 = \left(\sin\beta + f\cos\beta\frac{\dot{\rho}/\cos\beta}{\sqrt{\rho^2\dot{\varphi}^2 + (\dot{\rho}/\cos\beta)^2}}\right), \quad Q_2 = \left(\cos\beta - f\sin\beta\frac{\dot{\rho}/\cos\beta}{\sqrt{\rho^2\dot{\varphi}^2 + (\dot{\rho}/\cos\beta)^2}}\right).$$

Из уравнений (1)-(4) найдем обобщенное ускорение р

$$\ddot{\rho}\left(1+\mathrm{tg}\beta\frac{Q_1}{Q_2}\right) = \rho(\dot{\varphi}+\omega)^2 - g\frac{Q_1}{Q_2},\tag{5}$$

нормальную реакцию N

$$N = m \frac{g + \rho(\dot{\varphi} + \omega)^2 \operatorname{tg}\beta}{Q_2 + Q_1 \operatorname{tg}\beta}$$
(6)

и относительное угловое ускорение ф

$$\ddot{\varphi} = -\frac{f}{\rho} \cdot \frac{g + \rho(\dot{\varphi} + \omega)^2 \operatorname{tg}\beta}{Q_2 + Q_1 \operatorname{tg}\beta} \cdot \frac{\rho \dot{\varphi}}{\sqrt{\rho^2 \dot{\varphi}^2 + (\dot{\rho}/\cos\beta)^2}} - \frac{2\dot{\rho}}{\rho} (\dot{\varphi} + \omega) \ .$$

Подставив Q_1 и Q_2 в знаменатель выражения (6), после выполнения несложных выкладок получим нормальную реакцию в виде

$$N=m(g\cos\beta+\rho(\dot{\varphi}+\omega)^2\sin\beta),$$

не содержащем коэффициента трения *f*. Это означает, что сила *N* напрямую не зависит от коэффициента трения. И далее

$$\ddot{\varphi} = -\frac{f}{\rho} \cdot \frac{\left(g\cos\beta + \rho(\dot{\varphi} + \omega)^2 \sin\beta\right) \dot{\rho} \dot{\varphi}}{\sqrt{\rho^2 \dot{\varphi}^2 + (\dot{\rho}/\cos\beta)^2}} - \frac{2\dot{\rho}}{\rho} (\dot{\varphi} + \omega) .$$

Теперь рассмотрим условия относительного покоя точки и выполним их анализ. Условия предельного относительного равновесия точки на конусе получаются из уравнения движения (5), если положить $\ddot{\rho}$ =0, $\dot{\phi}$ =0 :

$$\rho\omega^{2} = g \frac{\sin\beta + f\cos\beta \frac{\dot{\rho}/\cos\beta}{\sqrt{(\dot{\rho}/\cos\beta)^{2}}}}{\cos\beta - f\sin\beta \frac{\dot{\rho}/\cos\beta}{\sqrt{(\dot{\rho}/\cos\beta)^{2}}}}.$$
(7)

Отношение

$$\frac{\dot{\rho}/\cos\beta}{\sqrt{(\dot{\rho}/\cos\beta)^2}} = \frac{\dot{\rho}}{\sqrt{\dot{\rho}^2}} = \operatorname{sign}(\dot{\rho})$$

есть знак скорости изменения полярного радиуса. В состоянии равновесия $\dot{\rho}=0$, однако, если $\rho\omega^2 > g \cdot tg\beta$, то имеет место тенденция к росту ρ , и можно считать, что sign($\dot{\rho}$)=1. И наоборот $\rho\omega^2 < g \cdot tg\beta$ свидетельствует о тенденции к уменьшению ρ и поэтому sign($\dot{\rho}$)=-1.

С учетом последних соображений из (7) следуют неравенства

$$\rho\omega^2 \ge g \frac{\sin\beta - f\cos\beta}{\cos\beta + f\sin\beta}$$
 $\mu \quad \rho\omega^2 \le g \frac{\sin\beta + f\cos\beta}{\cos\beta - f\sin\beta}$,

устанавливающие границы интервала для центробежной силы инерции $m\rho\omega^2$, обеспечивающей равновесное положение точки на поверхности вращающегося конуса. Оба неравенства могут быть объединены в одно

$$g\frac{\mathrm{tg}\beta - f}{1 + f \cdot \mathrm{tg}\beta} \le \rho \omega^2 \le g\frac{\mathrm{tg}\beta + f}{1 - f \cdot \mathrm{tg}\beta} \,. \tag{8}$$

Полученное соотношение можно записать иначе, введя в рассмотрение угол трения β_f

$$\beta_f = \operatorname{arctg}(f)$$
, или $f = \operatorname{tg}\beta_f$.

Теперь интервал равновесия приобретает вид

$$g \operatorname{tg}(\beta - \beta_f) \le \rho \omega^2 \le g \operatorname{tg}(\beta + \beta_f)$$
.

В этом интервале может иметь место относительное равновесие точки на конусе. Если в какой-то момент времени скорость скольжения точки сделается равной нулю (т. е. $\dot{\rho}=0$ и $\dot{\phi}=0$) и если величина $\rho\omega^2$ окажется слева от интервала (8), то с течением времени точка сползёт к вершине конуса и там останется. Если же центробежная сила $m\rho\omega^2$ окажется справа от интервала (8), то точка станет удаляться от оси конуса со все возрастающей скоростью. При отсутствии трения интервал равновесия стягивается в точку $\rho\omega^2 = g tg\beta$, и равновесие оказывается неустойчивым. С увеличением коэффициента трения угол трения увеличивается, и интервал равновесия растет.

Такой результат может быть проиллюстрирован рисунком 2. На нем представлены четыре графика, иллюстрирующие разбиение пространства параметров системы $\rho\omega^2 \leftrightarrow \beta$ на три области в зависимости от величины коэффициента трения. Область 1 – это место, соответствующее большим значениям переносной силы инерции, которая после начала движения все дальше и дальше уносит точку от оси конуса. Область 2 соответствует значениям силы инерции, при которых может иметь место относительный покой. Положение области 3 определяется малыми значениями силы инерции, при которых точка начнет сползать к вершине конуса, если в некоторый момент времени скорость ее скольжения окажется равной нулю. Из сравнения графиков видно, что область 2 с увеличением коэффициента трения расширяется, а области 1 и 3 сужаются.

Рисунок 2 – Области, характеризующие относительное движение и покой материальной точки при разных значениях угла β для разных коэффициентов трения *f*

Каждому значению коэффициента трения *f* соответствуют два характерных угла β:

$$\beta_1 = \operatorname{arctg}(f)$$
 и $\beta_2 = \operatorname{arctg}\left(\frac{1}{f}\right)$

Эти выражения получаются из условия (8), если левую границу для силы инерции положить равной нулю, а правую – бесконечности. Угол β_1 равен углу трения β_f , а угол β_2 – это дополнительный угол трения (для силы инерции). Названные углы связаны зависимостью

$$\operatorname{arctg}(f) + \operatorname{arctg}\left(\frac{1}{f}\right) = \frac{\pi}{2}.$$

При f < 1 имеет место случай $\beta_1 < \beta_2$, если же $f \ge 1$, то $\beta_1 \ge \beta_2$.

В случае f < 1 при фиксированном β увеличение силы инерции позволяет перевести на графиках рисунка 2 изображающую точку из области 3 в область 2 или 1, либо из области 2 в 1 (рисунки 2, *a*-*в*). Если же $f \ge 1$, то в интервале от $\beta_2 = 0,833$ до $\beta_1 = 0,7378$ изображающая точка будет находиться в области 2 (рисунок 2, *c*) при любых значениях силы инерции.

При $\beta + \beta_f \ge \pi/2$ никакое увеличение силы инерции не может привести к перемещению точки по конусу вверх из состояния относительного покоя. Если же $\beta - \beta_f \le 0$, то точка не может скользить вниз, даже если конус неподвижен. Оба эти случая имеют место, если $f \ge 1$.

Таким образом, на основе построенной механико-математической модели движения материальной точки по шероховатому вращающемуся конусу установлено влияние угловой скорости вращения конуса и угла наклона его образующей на характер относительного движения рассматриваемой точки. Полученные результаты могут быть использованы при проектировании устройств, предназначенных для транспортировки сыпучих материалов.

СПИСОК ЛИТЕРАТУРЫ

1 Чальцев, М. Н. Пути совершенствования пневмотранспортных систем / М. Н. Чальцев // Научно-технические аспекты комплексного развития транспортной отрасли: материалы междунар. науч.-практ. конф. – Донецк : ДонИЖТ, 2015. – С. 161–165.

2 Соколовский, В. В. Статика сыпучей среды / В. В. Соколовский. – М. : Государственное издательство физико-математической литературы, 1960. – 121 с.

3 Сенько, В. И. Оценка воздействия перевозимых сыпучих грузов на кузова вагонов / В. И. Сенько, А. В. Путято // Вестник Днепропетровского национального университета железнодорожного транспорта им. Акад. В. А. Лазаряна. – 2009. – Вып. 30. – С. 214–222.

4 **Shimanovsky, A.** Modeling of vehicle dynamics considering load relative movement / A. Shimanovsky, A. Putsiata, O. Kolomnikova // Acta Mechanica Slovaca. $-2008. - N_{\odot} 3$ -B. -P. 691-703.

5 Лойцянский, Л. Г. Курс теоретической механики. Т. 1. / Л. Г. Лойцянский, А. И. Лурье. – М. : ГИТТЛ. – 1955. – 380 с.

YU. P. SMIRNOV, V. K. TARASOV Tula State University, Tula, Russia

MOVEMENT AND EQUILIBRIUM OF POINT ON THE INSIDE ROUGH SURFACE OF THE ROTATING CONE

There was developed the mechanical-mathematical model of particulate material particle motion on the surface of the cone rotating around a vertical axis. The analysis of particle relative rest conditions depending on the angle of the cone was carried out.

Получено 14.04.2015