представлена на рисунке 3. Поскольку функция R1(f) на отрезке [0;1000] возрастает, то искомое значение длины прямой вставки f будет при условии R1(f) = 180 м. Найдем его с использованием вспомогательной функции R2(f) = R1(f) - 180, график которой изображен на рисунке 4. Из графика заключаем, что корень уравнения R2(f) = 0 приблизительно равен 10. Найдем его с использованием команды гооt.

 $f := 10, f_1 := \operatorname{root}(R2(f), f), f_1 = 11.539.$ Проверка: $R2(11.539) = -8.527 \ 10^{-13}, L(f_1) = 1444.$

 $\begin{array}{c} \underbrace{(5)}_{22} & 200 \\ 100 \\ -17.662 \\ -100 \\ 0 \\ 50 \\ 100 \\ 150 \\ 200 \\ f \rightarrow \end{array}$

40

300

367.551

Рисунок 3 – График зависимости радиуса R₁ от длины прямой вставки f

Рисунок 4 – График вспомогательной функции

Расчет соответствующих параметров петлевого разворота показывает, что траектория петли при данных условиях будет оптимальной, если длина прямой вставки f будет 11,54 м. При этом длина пути по петле составит 1444 м.

Список литературы

1 Головнич, А. К. Расчет основных параметров устройств на станции : учеб.-метод. пособие / А. К. Головнич, С. П. Новиков. – Гомель : БелГУТ, 2017. – 70 с.

УДК 629.4, 62.752, 621.534

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ДИНАМИКИ ВЗАИМОДЕЙСТВИЯ ЭЛЕМЕНТОВ ТРАНСПОРТНЫХ СРЕДСТВ С УЧЕТОМ НЕУДЕРЖИВАЮЩИХ СВЯЗЕЙ

А. И. ОРЛЕНКО, О. А. БУЛАВКО

Красноярский институт железнодорожного транспорта, Российская Федерация

А. В. ЕЛИСЕЕВ

Иркутский университет путей сообщения, Российская Федерация

Введение. Динамике тяговых двигателей уделяется значительное внимание, как объекту, состояние которого во многом определяет надежность работы средств железнодорожного транспорта [1, 2].

В докладе предлагается метод построения математических моделей для систем с неудерживающими связями. Рассматриваются возможности подхода оценки динамических свойств на основе определения условий граничного типа, когда реакция взаимодействия двух тел в контакте принимает нулевое значение. Развиваются обобщенные представления о беззазорных взаимодействиях между составными элементами механической колебательной системы с упругими связями, в том числе с опорой на вибрирующую поверхность (рисунок 1). Получены аналитические формы граничных соотношений. Вводится понятие о полной, статической и динамической реакциях связи. Приведены графики зависимостей амплитуды колебания динамической реакции (линии 1–4) при различных параметрах колебания опорной поверхности в сравнении со статической реакцией (линия 5). **І. Математическая модель взаимодействия**. В зависимости от параметров механической системы условие сохранения беззазорного движения принимает вид

$$\sqrt{\frac{(m_2k_1\omega_1^2)^2 + (p_2k_1\omega_1)^2}{(k_1 - (m_1 + m_2)\omega_1^2)^2 + ((p_1 + p_2)\omega_1)^2} \cdot A_1 < m_2g + f_c},$$
(1)

где p_i – коэффициенты вязкого трения; k_i – коэффициенты жесткости; f_c – постоянная сила, m_i – массы элементов; ω_1 , A_1 – частота и амплитуда колебания поверхности.

Рисунок 1 – Составное твердое тело на упругом колеблющемся основании Z₁:

Найдены достаточные условия беззазорных колебаний составных элементов механической колебательной системы в установившемся режиме. Показано, что в качестве факторов беззазорного движения системы могут рассматриваться не только частоты и амплитуды, но и соотношения масс составных элементов, жесткостей упругих связей, коэффициентов вязкого трения и внешних сил. Более сложная задача, представленная математической моделью с несколькими степенями свободы, рассматривается в работах [3–5].

При действии вибраций со стороны опорных поверхностей в таких структурах из нескольких составных частей, объединяемых неудерживающими связями, важным является исключение возможностей возникновения зазоров.

Показано, что для случая с несколькими степенями свободы достаточным условием беззазорного движения является неравенство

$$A_{1} < \min_{q} \left\{ \frac{N_{q}^{\Sigma}}{A_{(q)}(\omega_{1})} \right\}.$$
(2)

Заключение. Разработан метод построения математических моделей и определения условий беззазорного движения системы элементов или твердых тел, включающий определение функции критической амплитуды для простого контакта и аналитико-графическое представление функции критической амплитуды и параметров, удовлетворяющих условиям движения без возникновения зазоров в режиме установившихся колебаний.

Список литературы

1 **Орленко, А. И.** Комплексная диагностика тягового электродвигателя электровоза : [моногр.] / А. И. Орленко, М. Н. Петров, О. А. Терегулов. – Красноярск, 2016.–218 с.

2 **Орленко, А. И.** Исследование повреждений подвижного состава железной дороги Сибирского региона : [моногр.] / А. И. Орленко, М. Н. Петров. О. А. Терегулов. – Красноярск, 2016. – 198 с.

3 **Елисеев, А. В.** Динамика вибрационных взаимодействий элементов технологических систем с учетом неудерживающих связей : [моногр.] / А. В. Елисеев, В. В. Сельвинский, С. В. Елисеев. Новосибирск : Наука, 2015. – 332 с.

4 Елисеев, А. В. Методические основы определения допустимых режимов колебаний системы в оценке параметров контактных взаимодействий элементов для объекта в виде составного твердого тела [Электронный ресурс] / А. В. Елисеев // Инженерный вестник / МГТУ им. Н. Э. Баумана. – 2013. – № 12. – Режим доступа : http://engbul.bmstu.ru/ doc/657422.html. – Дата доступа : 26.11.2014.

5 Елисеев, А. В. Технология оценки свойств динамических взаимодействий в контактах составных твердых тел / А. В. Елисеев // Научные проблемы транспорта Сибири и Дальнего Востока. – 2014. – № 1–2. – С. 179–183.