Заключение. Анализ передаточных функций показывает, что, несмотря на насыщенность переменными и сложности их структуры, контроль над динамическими свойствами системы возможен за счет подбора параметров, к примеру, изменения значения дополнительной массы или положения динамического гасителя колебаний, что позволит регулировать значения частот динамического гашения колебаний.

Список литературы

1 **Фролов, К. В.** Прикладная теория виброзащитных систем / К. В. Фролов, Ф. А. Фурман. – М. : Машиностроение, 1985. – 286 с.

2 **Елисеев, С. В.** Мехатронные подходы в динамике механических колебательных систем / С. В. Елисеев, Ю. И. Резник, А. П. Хоменко. – Новосибирск : Наука, 2011. – 384 с.

3 Елисеев, С. В. Динамическое гашение колебаний: концепция обратной связи и структурные методы математического моделирования / С. В. Елисеев, А. П. Хоменко. – Новосибирск : Наука, 2014. – 357 с.

4 Концепция обратной связи в динамике механических систем и динамическое гашение колебаний [Электронный ресурс] / С. В. Елисеев [и др.] // technomag.edu.ru: Наука и образование: электронное научно-техническое издание. – № 5. – 2012. – Режим доступа: http://technomag.edu.ru/doc/378353.html. – Дата доступа : 10.05.2012.

УДК 539.3

ВОЛНОВОЕ ПОЛЕ ДВАЖДЫ УСЕЧЕННОГО УПРУГОГО КОНУСА ПОД ДЕЙСТВИЕМ КРУТЯЩЕГО МОМЕНТА

Н. Д. ВАЙСФЕЛЬД, К. Д. МЫСОВ

Одесский национальный университет им. И. И. Мечникова, Украина

Рассматривается упругий дважды усеченный конус, занимающий поверхность, описываемую в сферической системе координат соотношениями $a < r < b, -\pi \le \phi < \pi, -\omega \le \theta \le \omega$.

Верхний торец конуса $r = b, -\pi \le \phi < \pi, -\omega \le \theta \le \omega$ закреплен:

$$w(b,\theta,t) = 0. \tag{1}$$

На конической поверхности тела $a \le r \le b, -\pi \le \phi < \pi, \theta = \omega$ касательные напряжения считаются равными нулю:

$$\left(\frac{\partial w(r,\omega,t)}{\partial \theta} - w(r,\omega,t) \operatorname{ctg} \theta\right)\Big|_{\theta=\omega} = 0.$$
(2)

На нижнем торце конуса $r = a, -\pi \le \phi < \pi, -\omega \le \theta \le \omega$ к абсолютно жесткой накладке, сцепленной с торцом, приложен крутящий момент

$$w(a,\theta,t) = \alpha(t)l\sin\theta, \ l = b - a, \tag{3}$$

где α(*t*) – неизвестный угол поворота, который найден в дальнейшем из уравнения движения накладки

$$2\pi a^{3} \int_{0}^{\infty} \sin^{2}\theta \tau_{r_{\varphi}}(a,\theta,t) d\theta + MH(t) - \alpha"(t)J = 0, \qquad (4)$$

J – момент инерции накладки, H(t) – функция Хэвисайда.

Требуется найти волновое поле, удовлетворяющее краевым условиям (1)-(3) и уравнению кручения

$$(r^{2}w'(r,\theta,t))' + \frac{(\sin\theta w^{\bullet}(r,\theta,t))^{\bullet}}{\sin\theta} - \frac{w(r,\theta,t)}{\sin^{2}\theta} = \frac{r^{2}}{c^{2}}\frac{\partial^{2}w(r,\theta,t)}{\partial t^{2}}$$
(5)

при нулевых начальных условиях ($w(r, \theta, t) = u_{\phi}(r, \theta, t)$; штрих над символом обозначает производную по первой переменной, точка над символом – производную по второй переменной).

Для решения поставленной задачи применяется интегральное преобразование Лапласа по времени и интегральное преобразование Г. Я. Попова по угловой координате θ [1] с формулами прямого

$$w_{sk}(r) = \int_{0}^{\omega} \sin \theta P_{v_k}^{1}(\cos \theta) w_s(r, \theta) d\theta$$
(6)

и обратного

$$w_{s}(r,\theta) = \sum_{k=0}^{\infty} \frac{P_{v_{k}}^{1}(\cos\theta)w_{sk}(r)}{\left\|P_{v_{k}}^{1}(\cos\theta)\right\|^{2}}$$
(7)

преобразований, где *s* – параметр преобразования Лапласа, $P_{v_k}^1(\cos\theta)$ – присоединенные функции Лежандра первого рода, v_k – корни трансцендентного уравнения;

$$\frac{\partial P_{\nu_k}^{l}(\cos\theta)}{\partial\theta}\bigg|_{\theta=\omega} - \operatorname{ctg}\omega P_{\nu_k}^{l}(\cos\omega) = 0.$$
(8)

В результате интегральных преобразований в пространстве трансформант получена одномерная краевая задача

$$(r^{2}w'_{sk})' - v_{k}(v_{k}+1)w_{sk} - \frac{r^{2}}{c^{2}}s^{2}w_{sk} = 0;$$

$$w_{sk}(a) = \alpha_{s} l \gamma_{k}, \quad w_{sk}(b) = 0;$$

$$\alpha_{s} = \int_{0}^{\infty} e^{-st}\alpha(t) dt, \quad \gamma_{k} = \int_{0}^{\infty} \sin^{2}\theta P_{v_{k}}^{1}(\cos\theta) d\theta.$$
(9)

Для указанной задачи построена функция Грина $G_k(r,\xi)$. В пространстве трансформант построено точное решение задачи (9)

$$w_{sk}(r) = r^{-\frac{1}{2}} a^{\frac{1}{2}} \frac{Y_{v_k + \frac{1}{2}}(rq)J_{v_k + \frac{1}{2}}(bq) - Y_{v_k + \frac{1}{2}}(bq)J_{v_k + \frac{1}{2}}(rq)}{Y_{v_k + \frac{1}{2}}(aq)J_{v_k + \frac{1}{2}}(bq) - Y_{v_k + \frac{1}{2}}(bq)J_{v_k + \frac{1}{2}}(aq)} \alpha_s l\gamma_k.$$
(10)

Здесь $J_{v_k+\frac{1}{2}}(bq)$, $Y_{v_k+\frac{1}{2}}(rq)$ – функции Бесселя первого и второго рода соответственно.

К выражению (10) применяется обратное преобразование (7). Таким образом, в пространстве трансформант Лапласа построено точное решение исходной начальной краевой задачи (1)–(3), (5). Угол поворота, входящий в полученную формулу, найден из условия (4).

Численная реализация поставленной задачи детализирована для случая установившихся колебаний, для чего в полученных формулах нужно положить $s = i\omega$, где ω – частота колебаний.

Проведен численный анализ волнового поля конуса в зависимости от частоты колебаний, выявлены собственные частоты.

Список литературы

1 **Попов, Г. Я.** Новые интегральные преобразования с применением к некоторым краевым задачам математической физики / Г. Я. Попов // Украинский математический журнал. – 2002. – Т. 54, № 12. – С. 1642–1652.

УДК 539.3

КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ В ОКРЕСТНОСТИ КОНЦОВ ПОПЕРЕЧНОЙ ТРЕЩИНЫ В ПОЛУПОЛОСЕ

Н. Д. ВАЙСФЕЛЬД, В. В. РЕУТ, З. Ю. ЖУРАВЛЁВА Одесский национальный университет им. И. И. Мечникова, Украина

Рассматривается упругая полуполоса, которая занимает область, описываемую в декартовой системе координат соотношениями $0 < x < a, 0 < y < \infty$. Левая боковая грань защемлена – $u \ 0, y = 0, v \ 0, y = 0$, а правая находится в условиях гладкого контакта с окружающей средой – $u \ a, y = 0, \tau_{xy} \ a, y = 0$. По короткому торцу полуполосы заданы условия