нии длины высокоэластичного несжимаемого тела на 46 % величины фазовых скоростей первой и второй мод обращаются в нуль. Это свидетельствует о том, что в условиях плоского напряженнодеформированного начального состояния для высокоэластичного несжимаемого неогуковского тела при $\lambda_1 \approx 0,54$ возникает явление поверхностной неустойчивости. Отметим, что это значение совпадает с ранее полученной величиной в теории устойчивости и соответствует значению параметра критического укорочения $\lambda_{\rm kp}$.

Вычисления показали, что в гидроупругом волноводе фазовая скорость первой моды обращается в нуль при $\lambda_1 \approx 0,543695$. Это свидетельствует о том, что в условиях плоского напряженнодеформированного начального состояния поверхность упругого слоя гидроупругой системы, контактирующая со слоем жидкости, при $\tilde{\lambda}_{\rm kp} = \lambda_1 \approx 0,543695$ теряет поверхностную устойчивость. У второй поверхности упругого слоя, которая является свободной, явление поверхностной неустойчивости возникает при $\lambda_{\rm kp} = \lambda_1 \approx 0,543694$. Эти различия между $\tilde{\lambda}_{\rm kp}$ и $\lambda_{\rm kp}$ свидетельствуют о том, что наличие слоя идеальной сжимаемой жидкости приводит к понижению порога поверхностной неустойчивости гидроупругого волновода и возникновению ее раньше при меньшем сжатии $\tilde{\lambda}_{\rm kp} > \lambda_{\rm kp}$.

Таким образом, развитая линеаризованная теория волн применительно к высокоэластичным несжимаемым телам позволяет исследовать волновые процессы не только в общем и ряде частных случаев, а также возможность и условия возникновения явления поверхностной неустойчивости как в упругом слое, так и в гидроупругой системе.

Список литературы

1 Гузь, А. Упругие волны в телах с начальными (остаточными) напряжениями : в 2 ч. / А. Гузь. – Saarbrucken : LAP LAMBERT Academic Publishing, 2016.

2 Guz, A. N. Dynamics of compressible viscous fluid / A. N. Guz. – Cambridge : Cambridge Scientific Publishers, 2009. – 428 p.

УДК 62.752, 621:534;833; 888.6, 629.4.015;02

СПОСОБ НАСТРОЙКИ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ТРАНСПОРТНЫХ СРЕДСТВ ПРИ ПОМОЩИ РЫЧАЖНЫХ МЕХАНИЗМОВ

Р. С. БОЛЬШАКОВ, А. В. НИКОЛАЕВ Иркутский государственный университет путей сообщения, Российская Федерация

Введение. Для стабильной эксплуатации транспортных средств при действии вибрационных нагружений в современных условиях необходим контроль над их динамически состоянием [1–3]. Одним из наиболее широко используемых методов является динамическое гашение колебаний [4], которое может быть получено при помощи введения в систему специальных устройств.

В предлагаемом докладе рассматриваются возможности настройки динамического состояния механической колебательной системы с твердым телом на упругих опорах с помощью дополнительно введенного рычажного механизма с дополнительной массой.

І. Общие положения. Постановка задачи. Рассматривается расчетная схема в виде механической колебательной системы с твердым телом на упругих опорах с дополнительно присоединенным динамическим гасителем колебания (рисунок 1, *a*). Возмущение представлено периодической силой Q_1 (гармоническое воздействие). Введены следующие обозначения: y_0 – колебания центра тяжести рабочего органа 1; M – масса твердого тела; J – момент инерции; y_1 , y_2 – координаты движения твердого тела; $y_{B,O}$, y_A – линейные колебания крепления динамического гасителя; ϕ – угловое колебание твердого тела; ϕ_1 – угловое колебание динамического гасителя 10; т. O – центр тяжести; т. A – точка крепления неподвижной части динамического гасителя к твердому телу; T. B – точка крепления упругого элемента динамического гасителя; k_1 , k_2 , k_3 – жесткости упругих элементов.

Рисунок 1 – Расчетная (*a*) и структурная (б) схемы системы с твердым телом с динамическим гасителем

После построения и трансформации структурной схемы системы ($p = j\omega$ – комплексная переменная) (рисунок 2, δ) и набора дифференциальных уравнений математическая модель примет вид, показанный в таблице 1.

TC	1	TC 1		1				
Ταρπιμα	- 1	KOOM	биниенты	пиф	he	пенния пьных	vnявнении	системы
1 000000000 1		1103494	pingineiribi	Any	$\mathbf{r}\mathbf{v}$	pendumenta	ypublichini	CHCICAIDI

<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃					
$Ma^2 + Jc^2 + m_0a_1^2 p^2 + k_1 + a_2^2k_3$	$Mab - Jc^2 + m_0 a_1 b_1 \ p^2 - k_3 a_2^2$	$m_0 a_1 l_0 p^2 - k_3 a_2 l_0$					
a ₂₁	a ₂₂	<i>a</i> ₂₃					
$Mab - Jc^2 + m_0 a_1 b_1 p^2 - k_3 a_2^2$	$Mb^2 + Jc^2 + m_0b_1^2 p^2 + k_2 + k_3a_2^2$	$m_0 b_1 l_0 p^2 + k_3 a_2 l_0$					
<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃					
$m_0 a_1 l_0 p^2 - k_3 a_2 l_0$	$m_0 b_1 l_0 p^2 + k_3 a_2 l_0$	$m_0 l_0^2 p^2 + k_3 l_0^2$					
Обобщенные силы							
\overline{Q}_1	0	0					
* $a = \frac{l_2}{l_1 + l_2}$; $b = \frac{l_1}{l_1 + l_2}$; $c = \frac{1}{l_1 + l_2}$; $a_1 = a + l_A c$; $b_1 = b - l_A c$; $a_2 = -c(l_A + l_B)$; $l_0 = l_A + l_B$.							

II. Особенности динамических свойств системы при перемещении динамического гасителя колебаний. Оценка динамического состояния исследуемой механической колебательной системы может быть произведена при помощи построения передаточных функций системы по координатам y_1 и y_2 , которые можно получить после использования формул Крамера [2]. Оптимальный режим работы транспортного средства достигается при достижении соотношения координат $y_2/y_1 = 1$ и поддержание такого режима возможно при изменении параметров дополнительной массы m_0 и положения динамического гасителя колебаний. Графики зависимостей $\omega_{дин}$ при различных значениях этих параметров приведены на рисунке 2.

Рисунок 2 – Семейство частотных диаграмм при соотношении координат $y_2/y_1 = 1$

Заключение. Анализ передаточных функций показывает, что, несмотря на насыщенность переменными и сложности их структуры, контроль над динамическими свойствами системы возможен за счет подбора параметров, к примеру, изменения значения дополнительной массы или положения динамического гасителя колебаний, что позволит регулировать значения частот динамического гашения колебаний.

Список литературы

1 **Фролов, К. В.** Прикладная теория виброзащитных систем / К. В. Фролов, Ф. А. Фурман. – М. : Машиностроение, 1985. – 286 с.

2 **Елисеев, С. В.** Мехатронные подходы в динамике механических колебательных систем / С. В. Елисеев, Ю. И. Резник, А. П. Хоменко. – Новосибирск : Наука, 2011. – 384 с.

3 Елисеев, С. В. Динамическое гашение колебаний: концепция обратной связи и структурные методы математического моделирования / С. В. Елисеев, А. П. Хоменко. – Новосибирск : Наука, 2014. – 357 с.

4 Концепция обратной связи в динамике механических систем и динамическое гашение колебаний [Электронный ресурс] / С. В. Елисеев [и др.] // technomag.edu.ru: Наука и образование: электронное научно-техническое издание. – № 5. – 2012. – Режим доступа: http://technomag.edu.ru/doc/378353.html. – Дата доступа : 10.05.2012.

УДК 539.3

ВОЛНОВОЕ ПОЛЕ ДВАЖДЫ УСЕЧЕННОГО УПРУГОГО КОНУСА ПОД ДЕЙСТВИЕМ КРУТЯЩЕГО МОМЕНТА

Н. Д. ВАЙСФЕЛЬД, К. Д. МЫСОВ

Одесский национальный университет им. И. И. Мечникова, Украина

Рассматривается упругий дважды усеченный конус, занимающий поверхность, описываемую в сферической системе координат соотношениями $a < r < b, -\pi \le \phi < \pi, -\omega \le \theta \le \omega$.

Верхний торец конуса $r = b, -\pi \le \phi < \pi, -\omega \le \theta \le \omega$ закреплен:

$$w(b,\theta,t) = 0. \tag{1}$$

На конической поверхности тела $a \le r \le b, -\pi \le \phi < \pi, \theta = \omega$ касательные напряжения считаются равными нулю:

$$\left(\frac{\partial w(r,\omega,t)}{\partial \theta} - w(r,\omega,t) \operatorname{ctg} \theta\right)\Big|_{\theta=\omega} = 0.$$
(2)

На нижнем торце конуса $r = a, -\pi \le \phi < \pi, -\omega \le \theta \le \omega$ к абсолютно жесткой накладке, сцепленной с торцом, приложен крутящий момент

$$w(a,\theta,t) = \alpha(t)l\sin\theta, \ l = b - a, \tag{3}$$

где α(*t*) – неизвестный угол поворота, который найден в дальнейшем из уравнения движения накладки

$$2\pi a^{3} \int_{0}^{\infty} \sin^{2}\theta \tau_{r_{\varphi}}(a,\theta,t) d\theta + MH(t) - \alpha"(t)J = 0, \qquad (4)$$

J – момент инерции накладки, H(t) – функция Хэвисайда.

Требуется найти волновое поле, удовлетворяющее краевым условиям (1)-(3) и уравнению кручения

$$(r^{2}w'(r,\theta,t))' + \frac{(\sin\theta w^{\bullet}(r,\theta,t))^{\bullet}}{\sin\theta} - \frac{w(r,\theta,t)}{\sin^{2}\theta} = \frac{r^{2}}{c^{2}}\frac{\partial^{2}w(r,\theta,t)}{\partial t^{2}}$$
(5)

при нулевых начальных условиях ($w(r, \theta, t) = u_{\phi}(r, \theta, t)$; штрих над символом обозначает производную по первой переменной, точка над символом – производную по второй переменной).