достигаются поставленные перед этим предприятием цели. Оно помогает принять взвешенные решения по первоочередному направлению финансовых ресурсов для создания стабильной ресурсной базы, с одной стороны, и мотивации труда персонала – с другой.

При формировании бюджетов структурных подразделений и ПАО в целом используются расчётные эксплуатационные показатели, по которым формируется тариф (доход за единицу), в том числе и отнесение инвестиций на единицу дополнительной транспортной услуги или выполненной на более высоком качественном уровне: от пассажирских перевозок (профильных и непрофильных услуг), выполнения начально-конечных операций, аренды вагонов и контейнеров, предоставления локомотивов и локомотивных бригад для выполнения поездной и маневровой работы, предоставления железнодорожной инфраструктуры для выполнения безопасных передвижений поездов и вагонов. В таком случае инновационная составляющая будет рассматриваться как часть транспортных услуг, выполняемых по прогрессивным технологиям по более высокой добавочной стоимости.

УДК 656.225.073.444

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ОРГАНИЗАЦИИ ПЛОДООВОЩНЫХ ПЕРЕВОЗОК

Н. Н. ИБРАГИМОВ

Ташкентский институт инженеров железнодорожного транспорта, Республика Узбекистан

Узбекистан является одним из поставщиков свежих плодов и овощей на рынки стран СНГ и дальнего зарубежья. В настоящее время наметилась положительная тенденция роста объёмов перевозок плодов и овощей железнодорожным транспортом как внутри республики, так и за ее пределы.

Рост производства плодов и овощей в фермерских и дехканских хозяйствах, их мелкопартионность, дальнейшее углубление рыночных отношений в секторах экономики требуют пересмотра действующей технологии доставки продукции потребителям с сохранением при этом ее качества. Процесс доставки плодов и овощей потребителям, находящимся за пределами республики, усложнен ещё и тем, что между бывшими Союзными республиками появились таможни со всеми вытекающими отсюда последствиями: таможенными процедурами, платежами, следовательно, и потерей времени на этих пунктах. В свою очередь, мелкопартионность отправляемого товара, требующего скорой доставки потребителю, существенно сократила возможности железнодорожного транспорта в удовлетворении требований клиентуры.

Технология перевозок плодов и овощей на протяжении нескольких десятков лет практически не менялась, хотя качество производимой продукции изменилось.

Предыдущие разработки по организации перевозок свежих плодов и овощей существовали для планового хозяйства, когда производитель и покупатель были прикреплены друг другу независимо от требований потребителя к качеству продукции. В результате значительная часть продукции терялась на стадии транспортировки.

Рыночные отношения обусловили ряд особенностей транспортировки вышеуказанных грузов:

- отгрузку осуществляют частные фирмы, компании и лица, порой не знакомые или слабо знакомые с правилами перевозок данных грузов;
- погрузка осуществляется по требованию клиента на большом числе станций, что усложняет поездную работу;
- погрузка груза в грузовое помещение вагона осуществляется вручную, что, порой, травмирует загружаемый груз;
- не соблюдается технология подготовки груза к отгрузке (предварительное охлаждение, сортировка, калибровка и т. д.);
- отсутствие норм загрузки на отдельные виды плодоовощей (бахчевые культуры) нередко становится причиной загрузки навалом, что становится причиной роста порчи.

К вышесказанному можно ещё добавить тот факт, что подвижной состав железнодорожного транспорта, призванный перевозить свежие плоды и овощи, имеет высокую степень износа. Это обусловливает нарушение температурного режима в пути следования груза, что приводит к порче продукции.

Загрузка свежих плодов и овощей в грузовое помещение вагона осуществляется без учёта его качества — биохимического состава и микробиологической обсеменённости, что также является причиной порчи продукции. Для сокращения микробиологической обсеменённости в настоящее

время на практике используют окуривание сернистым газом. Исследованиями учёных доказано, что сернистый газ проникает в верхние слои ягол.

В Ташкентском институте инженеров железнодорожного транспорта была предпринята первая попытка использовать для сокращения микробиологической обсеменённости поверхности плодов и овощей ультрафиолетовое облучение. Был проведен эксперимент с использованием вибростенда, имитирующего движение вагона в составе поезда. Однако единичные опыты не позволили разработчикам принять какие-либо решения о необходимости применения ультрафиолетового облучения с целью повышения стойкости плодов и овощей к транспортировке за счёт сокращения обсеменённости. Кроме того, на тот момент была слабо разработана методическая основа проведения ультрафиолетового облучения.

Для внесения дополнений в правила перевозок плодов и овощей необходимо вначале в стационарных условиях провести исследования, результаты которых должны быть проверены в эксплуатационных условиях, для чего необходимо провести опытные перевозки того помологического вида плодов и овощей, который прошел испытания в стационарных условиях. Лишь после этого в Правила перевозок плодов и овощей могут быть внесены дополнения и изменения.

Для ускорения решения поставленных задач, сокращения объема опытных перевозок плодоовощной продукции, во избежание риска снижения качества повагонных партий грузов при транспортировке и исключения применения метода проб и ошибок при оценке комплексного влияния транспортных факторов и содержания нитратов, тяжелых металлов (меди, цинка, свинца, ртути) на сохранность перевозимых грузов, исследования проводятся в два этапа.

На первом этапе проводятся стационарные исследования при моделировании транспортного процесса перевозки свежих плодоовощей в рефрижераторных вагонах с использованием вибростенда-рефрижератора, конструкции ТашИИТ – холодильной камеры, установленной на вибростенд (рисунок 1).

Второй этап включает в себя эксплуатационную проверку предложенных рекомендаций по оценке влияния комплексных факторов на сохранность качества свежих плодоовощей, путем проведения опытных перевозок в эксплуатационных условиях.

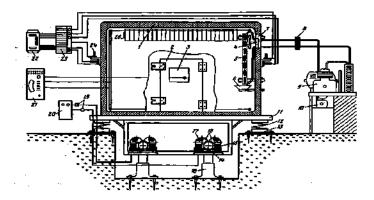


Рисунок 1 — Схема камеры-холодильника: 1 — каркас камеры-холодильника; 2 — дверной проем; 3 — смотровое окно двери; 4 — вентилятор; 5 — воздухоохладитель; 6 — устройство для удаления влаги при разморозке воздухоохладитель; 7 — вентиляционный люк; 8 — демпфер (успокоитель); 9 — холодильный агрегат; 10 — емкость для хранения фреона; 11 — рама вибростенда; 12 — мягкие элементы (пружины); 13 — опоры для пружины; 14 — электромотор, приводящий в действие вибраторы; 15 — рама вибратора; 16 — зубчатые колеса; 17 — дебалансы; 18 — опоры для электромотора; 19 — диодные мосты; 20 — латор; 21 — термостанция; 22 — светолучевой осциллограф НО41 УИ2; 23 — тензоусилитель ТУП-12; 24 — тензодатчики; 25 — датчики температуры

УДК 711.5

РОЛЬ ТРАНСПОРТНО-ПЕРЕСАДОЧНОГО УЗЛА «СМЫШЛЯЕВКА» В СИСТЕМЕ ГОРОДСКОГО ПАССАЖИРСКОГО ТРАНСПОРТА

С. А. ЛЕОНОВА

Самарский государственный университет путей сообщения, Российская Федерация

Проблема организации пассажирских перевозок в городском округе Самара является одной из наиболее актуальных. Качество жизни в мегаполисе определяется многими факторами, в том числе и уровнем развития транспортной инфраструктуры. Важно обеспечить жителей городской агломерации комфортными условиями поездки и пересадки с одного вида транспорта на другой, организовать доставку пассажиров с минимальными затратами времени и денег.

Городской пассажирский транспорт играет особую социальную роль. Его значение настолько велико, что от уровня развития сети общественного пассажирского транспорта зависит уровень развития города и региона в целом, благосостояние жителей и уровень жизни населения. Функция