- 4) возрастание актуальности территорий Залинейного района, непосредственно примыкающего к центру города. Здесь уже в настоящий момент наметилась тенденция реконструкции индивидуальной жилой застройки под нужды малого и среднего бизнеса, коммерции;
- 5) смещение вектора территориально-пространственного роста города в южном направлении, выравнивание пятен освоенных территорий левого и правого берегов реки Сож. Это относится, в первую очередь, к территориям в районах Севруки, Ченки, Якубовка;
- 6) усиление роли правобережной части города, центральной части Новобелицы в общегородской интеграции как следствие развития периферии города в южном и юго-восточном направлениях;
- 7) активизация использования для реализации городских интересов поселений и территорий в юго-восточном направлении, их включение в интенсивный общегородской интеграционный процесс.

Ключевым фактором на данном этапе развития является окончание максимально возможного наращивания каркаса градостроительной системы и переход к качественной перестройке городских территорий, их реконструкция и реновация.

УДК 624.072.21.7

НЕЛИНЕЙНЫЙ РАСЧЕТ ПО В. И. СОЛОМИНУ ФУНДАМЕНТНОЙ БАЛКИ С ТРЕЩИНАМИ НА УПРУГОМ ОСНОВАНИИ

О. В. КОЗУНОВА, С. В. КУМАШОВ

Белорусский государственный университет транспорта, г. Гомель

Задача о расчете фундаментов сооружений является одной из трудных задач строительной механики, главным образом из-за чрезвычайно неопределенных физических свойств грунтов основания под фундаментами [1].

До образования трещин железобетонные конструкции могут быть рассчитаны как линейноупругие. При нарушении сплошности материала вследствие трещинообразования расчет производится методом, предложенным профессором В. И. Соломиным [2] и основанным на приведении железобетонного элемента с трещинами эквивалентному ему по жесткости сплошному элементу.

Постановка задачи. Для балок с трещинами физическое уравнение нелинейно, следовательно, жесткость будет меняться по длине балки. В этом случае дифференциальное уравнение упругой линии балки имеет следующий вид:

$$B\frac{d^4w}{dx^4} + 2\frac{dB}{dx}\frac{d^3w}{dx^3} + \frac{d^2B}{dx^2}\frac{d^2w}{dx^2} = q - p,$$
 (1)

Это дифференциальное уравнение является нелинейным, так как входящая в него жесткость B является функцией не только координаты x, но и неявной функцией кривизны.

Физически нелинейная задача решается путем последовательных приближений. В каждом приближении разрешающие уравнения линеаризируются и конструкция рассчитывается как некоторая линейно-упругая система. Такие способы расчета названы методами упругих решений [4]. Среди них различают (по терминологии И. А. Биргера) метод переменных параметров упругости, метод дополнительных нагрузок и метод дополнительных деформаций. Рассмотрим их использование для решения поставленной задачи.

Алгоритм нелинейного расчета. Метод переменных параметров упругости. Он заключается в том, что на каждом этапе последовательных приближений рассчитывается линейно-упругая бал-ка, жесткость элементов которой различна и вычисляется по результатам предыдущего приближения, т. е. на каждом этапе решается уравнение

$$B^{(k-1)} \frac{d^4 w}{dx^4} + 2\left(\frac{dB}{dx}\right)^{(k-1)} \left(\frac{d^3 w}{dx^3}\right)^k + \left(\frac{d^2 B}{dx^2}\right)^{(k-1)} \left(\frac{d^2 w}{dx^2}\right)^k + p^k = q,$$
(2)

где k — номер приближения.

В первом приближении жесткость принимается равной B_0 . Решив уравнение (2), находим перемещения, а затем и кривизны во всех точках балки χ_{κ} . Изгибающие моменты M_{κ} легко могут быть определены, так как функция жесткости балки $\beta_{k-1} = \operatorname{tg}\beta_{k-1}$ известна из предыдущего приближения.

Теперь имеем возможность получить функцию жесткости балки для последующего приближения B_k . На рисунке 1 показано два пути определения этой функции: по моментам $-B_M^k=\operatorname{tg}\beta_M^k$ и по кривизнам $-B_\chi^k=\operatorname{tg}\beta_\chi^k$.

Здесь лишь заметим, что на рисунке 2 приведена упрощенная диаграмма $M-\chi$, которая не имеет разрыва в точке $M=M_{\rm crc}$, а следовательно, позволяет выразить жесткость как непрерывную функцию изгибающего момента.

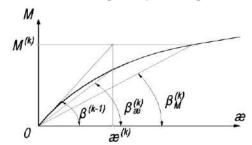


Рисунок 1 — Определение коэффициентов жесткости по моментам $B_{\scriptscriptstyle M}^k=\mathrm{tg}\beta_{\scriptscriptstyle M}^k$ и кривизнам $B_{\scriptscriptstyle \chi}^k=\mathrm{tg}\beta_{\scriptscriptstyle \chi}^k$

Последовательное решение уравнения (2) с уточнением жесткостей тем или другим способом в каждом приближении продолжается до тех пор, пока разница между результатами, получаемыми на двух соседних приближениях, не окажется достаточно малой.

Численные результаты. При расчете рассмотрена монолитная фундаментная балка на упругом Винклеровском основании под различными видами нагрузки (статический эквивалент $q_{_{9KB}} = 100 \text{ кH/m}$), длиной 6 м, приведенной жесткости $B_0 = 5 \cdot 104 \text{ кH·m}^2$. В результате нелинейного расчета (нулевая итерация) получено распределение осадок под фундаментной балкой (рисунок 2).

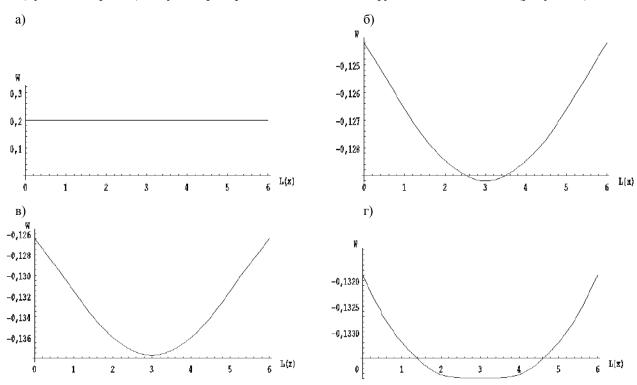


Рисунок 2 — Распределение осадок под фундаментной балкой, эпюра прогибов фундаментной балки (нулевая итерация), м: a — при постоянной равномерно распределенной нагрузке; δ — при распределенной нагрузке в виде синусоиды; δ — при одной симметрично распределенной по участку балки нагрузке; ϵ — при двух симметрично распределенных по участку балки нагрузках

Вывод. В монографии В. И. Соломина [2] предложено нелинейное дифференциальное уравнение фундаментной балки с трещинами, решая которое, получено распределение осадок под балкой, и можно получить распределение реактивных давлений в контактной зоне. Численные результаты нелинейного расчета (нулевая итерация) в виде графических зависимостей осадки от нагрузки для разных ее видов при одном статическом эквиваленте соответствуют гипотезам и допущениям строительной механики в стадии упругой деформации.

Список литературы

- 1 **Жемочкин, Б. Н.** Практические методы расчета фундаментных балок и плит на упругом основании / Б. Н. Жемочкин, А. П. Синицын. М.: Гос. изд-во лит-ры по строительству, архитектуре и строительным материалам, 1962.
- 2 **Соломин, В. И.** Методы расчета и оптимальное проектирование железобетонных фундаментных конструкций / В. И. Соломин, С. Б. Шматков. М : Стройиздат, 1986. 206 с.
- 3 **Петров, В. В.** Нелинейная инкрементальная строительная механика / В. В. Петров. М. : Инфра-инженерия, 2014. 480 с.
- 4 **Биргер, И. А.** Некоторые общие методы решения задач теории пластичности / И. А. Биргер // Прикладная математика и механика. 1951. Т. XV. Вып. 6. С. 765–770.

УДК 624.072.21.7

НЕЛИНЕЙНЫЙ РАСЧЕТ ЗАКЛАДНОЙ ДЕТАЛИ ОПОРНОГО УЗЛА ВАРИАЦИОННО-РАЗНОСТНЫМ МЕТОДОМ

О. В. КОЗУНОВА, К. А. СИРОШ

Белорусский государственный университет транспорта, г. Гомель

Рассматривается закладная деталь опорного узла «ригель-консоль колонны» и исследуется ее напряженно-деформированное состояние в нелинейной постановке. Способом расчета данного элемента опорного соединения строительной конструкции является вариационно-разностный метод (ВРМ).

Вариационно-разностный метод (ВРМ) является одним из приближенных способов расчета строительных конструкций. Сущность ВРМ заключается в сведении задачи минимизации функционала полной потенциальной энергии, являющейся квадратичной функцией относительно деформаций и перемещений [1], к задаче минимизации функции многих переменных, отнесенных к узлам конечно-разностной сетки [2].

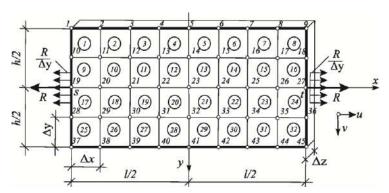


Рисунок 1 – Разбивочная сетка расчетной модели

Постановка задачи. Закладная деталь опорного узла моделируется пластиной размерами l, x, h с упругими параметрами E_0 , μ_0 под действием сосредоточенных сил R в условии плоского напряженного состояния (рисунок 1).

Алгоритм расчета в нелинейной постановке. Разобьем пластинку прямоугольной сеткой (см. рисунок 1) на отдельные ячейки (рисунок 2) и найдем энергию деформаций [3] для отдельной ячейки с номером (i)».

Полная энергия пластинки и действующей на нее нагрузки представляется в виде суммы

$$\Im = \sum_{n=1} \Delta \Im_j - R(u_s + u_t), \tag{1}$$

где n — количество ячеек разбивочной области, n = 32.

Дифференцируя (1) по каждому узловому перемещению, получаем систему линейных алгебраических уравнений.

Для численного нахождения решения организуем итерационный цикл при постоянном коэффициенте Пуассона [4] для следующих исходных данных нагруженной пластинки: $E_0 = 2 \cdot 10^5 \, \mathrm{M}\Pi a$; $\sigma_u = 240 \, \mathrm{M}\Pi a$; l = 0,4 м; h = 0,2 м; $\Delta z = 0,01$ м, $\mu_0 = 0,3$; R = 150 кH.

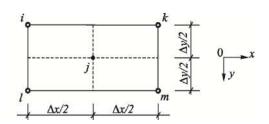


Рисунок 2 – Прямоугольная ячейка метода конечных разностей