4 Цветаева, Н. В. Основы регуляции обмена железа / Н. В. Цветаева, А. А. Левина, Ю. И. Мамукова // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. – 2010. – Т. 3. – № 3. – С. 278–283.

УДК 504.75:628.5

СРАВНЕНИЕ ARIMA-МЕТОДА И НЕЙРОСЕТЕВОГО МОДЕЛИРОВАНИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ ЗНАЧЕНИЙ ПО МУТНОСТИ ИСХОДНЫХ ВОД ИНФИЛЬТРАЦИОННОГО ВОДОЗАБОРА ЮГО-ВОСТОКА БЕЛАРУСИ

P. H. BOCTPOBA

Белорусский государственный университет транспорта, г. Гомель

Д. В. МАКАРОВ

Уфимский государственный нефтяной технический университет, Российская Федерация

Модель авторегрессии и проинтегрированного скользящего среднего Бокса-Дженкинса (ARIMA) нашла широкое применение для прогнозирования в области экологического мониторинга [1–3]. В последние десятилетия происходит активное развитие систем искусственного интеллекта, базирующегося на применении искусственных нейронных сетей (ИНС) [4, 5]. Нами методами ИНС и ARIMA-модели проведено прогнозирование значений мутности исходных вод.

В качестве исходных данных использованы значения мутности исходной воды инфильтрационного водозабора (ИВ) юго-восточной части Республики Беларусь с 2009 по 2017 гг. Измерение исследуемого показателя проводилось два раза в сутки; исходный временной ряд включал 5215 значений. Реализация ARIMA-модели проведена аналогично работе [6], а ИНС-метода аналогично работе [7]. Количество скрытых нейронов при ИНС моделировании варьировалось от 1 до 10. ARIMA-моделирование проводилось в программном комплексе Statistica 6.0, а ИНС – в Matlab R2017а.

Среднее многолетнее значение мутности исходных вод ИВ составляет 2,86 мг/дм³ (рисунок 1). Линия тренда концентрации по мутности за рассматриваемый временной интервал характеризуются увеличением значений на 5,24 мг/дм³.

Рисунок 1 – Исходный временной ряд значений мутности в исходной воде

По результатам проверки на стационарность, включающей анализ автокорреляционной и частной автокорреляционной функций, расширенный тест Дики-Фуллера, исходного временного ряда, установлено, что временной ряд нестационарен. Для приведения исходного временного ряда к стационарному виду взята разность первого порядка. По результатам сравнения среднеквадратических отклонений выбрана модель ARIMA (2; 1; 2) с остатком 4,12.

По результатам сравнения ИНС выявлено, что наиболее близкие к реальным значениям мутности в исходных водах обеспечивает ИНС с алгоритмом обучения Левенберга-Марквардта и тремя скрытыми нейронами.

Результаты ИНС-моделирования практически совпадают с фактическими значениями мутности исходных вод ИВ (рисунке 2).

Абсолютные ошибки составили 2,93; 2,23, а относительные – 1,16; 0,99 для ARIMA-метода и ИНС, соответственно. Таким образом, ИНС позволяет осуществлять несколько более точное прогнозирование значений мутности в исходных водах ИВ.

Рисунок 2 – Сравнение моделируемых и фактических значений мутности в исходных водах ИВ по графику с накоплением (*a*) и сравнения (б)

Список литературы

1 Ahmet Kurunça. Performance of two stochastic approaches for forecasting water quality and streamflow data from Yeşilurmak River / Ahmet Kurunça, Kadri Yüreklia, Osman Çevik // Environmental Modelling & Software. – 2005. – № 9. – P. 1195–1200.

2 Arima as a forecasting tool for water quality time series measured with UV-Vis spectrometers in a constructed wetland / Hernández Nathalie [et. al.] // Tecnología y Cienciasdel Agua. -2017. $-N_{\odot}$ 5, vol. VIII. -P. 127–139.

3 Sang-Hyuk, Park. Sedimentation Process Modeling using Transfer Function ARIMA for Water Quality Diagnosis and Prediction / Sang-Hyuk Park, Jayong Koo // Advanced Science and Technology Letters. – 2015. – № 99. – P. 97–100.

4 Потылицына, Е. Н. Использование искусственных нейронных сетей для решения прикладных экологических задач / Е. Н. Потылицына, Л. В. Липинский, Е. В. Сугак // Современные проблемы науки и образования. – 2013. – № 4. – С. 1–8.

5 Archana Sarkara. River Water Quality Modelling using Artificial Neural Network Technique / Archana Sarkara, Prashant Pandey // Aquatic Procedia. -2015. -N 4. -P. 1070–1077.

6 **Крюков, Ю. А.** АRIMA-модель прогнозирования значений трафика / Ю. А. Крюков, Д. В. Чернягин // Информационные технологии и вычислительные системы. – 2011. – № 2. – С. 41–49.

7 **Крючин, О. В.** Прогнозирование временных рядов с помощью искусственных нейронных сетей и регрессионных моделей на примере прогнозирования котировок валютных пар / О. В. Крючин, А. С. Козадаев, В. П. Дудаков // Исследовано в России. – 2010. – № 30. – С. 354–362.

УДК 628.83:697.921.22

ВЛИЯНИЕ РАБОТЫ КЛАПАНОВ ВЕНТИЛЯЦИОННЫХ УСТАНОВОК НА ОБЩЕЕ СОСТОЯНИЕ СИСТЕМ ВЕНТИЛЯЦИИ

Н. И. ДВОРАК

ОАО «Мозырский нефтеперерабатывающий завод», Республика Беларусь

В. Г. СОЛОВЕЙКО

Белорусский государственный университет транспорта, г. Гомель

Для того чтобы системы вентиляции обеспечивали проектные расходы воздуха, устойчиво работали на выполнение санитарно-гигиенических и метеорологических условий в обслуживаемых помещениях, перед сдачей в эксплуатацию они подвергаются аэродинамическим испытаниям, регулировке и наладке. С этой целью вентиляционные установки оснащаются различными регулиру-