«

66 99

. . , . .

«

» (

-

. . , . .

--

```
531.1 (075.8)
    22.21
     -49
                                                      ( «
                                                                  »).
 49
         » (
                                                           ):
                                   , 2006. – 63 .
         ISBN 985-468-184-X
                                            «
                                                            531.1 (075.8)
                                                                   22.21
                                                              . ., 2006
ISBN 985-468-184-X
                                                             », 2006
                                                    «
```

		4
1	1.1 1.2 1.3	-4
2	2.1 2.1.1 2.1.2	
	2.2 2.3	
3	3.1 3.2 3.3	32 32 34 -6
4	4.1 4.1.1	
	4.1.2 4.1.3 4.2 4.3	. 44 - 46 -7
		«

[1] , [2–4]. 30 5). (.).

4

	-4	-5	-6	-7		-4	-5	-6	-7		-4	-5	-6	-7		-4	-5	-6	-7
01	7	3	16	23	26	24	4	22	28	51	1	7	19	6	76	11	5	19	25
02	26	14	8	18	27	30	22	11	5	52	9	15	26	1	77	24	19	9	17
03	11	27	29	3	28	22	17	3	14	53	4	25	28	27	78	22	29	11	1
04	18	2	17	29	29	8	8	20	24	54	16	2	13	28	79	2	8	15	20
05	22	25	1	10	30	5	19	26	10	55	11	28	30	2	80	15	18	29	10
06	4	16	20	1	31	14	20	13	2	56	6	30	17	24	81	21	26	17	3
07	1	6	14	27	32	9	9	24	16	57	17	26	4	12	82	18	3	12	22
08	14	28	2	8	33	20	23	7	13	58	30	11	22	29	83	26	27	9	12
09	21	11	8	14	34	12	5	16	18	59	14	29	8	4	84	9	25	30	6
10	8	9	15	19	35	7	28	25	30	60	26	17	11	21	85	4	10	13	21
11	16	22	10	2	36	15	14	9	15	61	27	13	5	16	86	16	23	28	5
12	25	12	23	5	37	25	30	4	8	62	30	28	1	7	87	13	1	23	30
13	29	24	7	11	38	2	10	18	22	63	13	24	9	18	88	23	16	6	19
14	15	4	19	22	39	23	24	1	9	64	24	6	30	9	89	6	7	20	16
15	23	20	4	15	40	10	12	14	6	65	7	22	14	25	90	29	13	2	24
16	12	13	24	4	41	17	29	7	19	66	28	26	3	15	91	3	26	21	29
17	19	30	3	23	42	19	16	23	4	67	15	9	12	26	92	17	21	10	25
18	10	7	18	27	43	29	1	19	13	68	12	20	25	3	93	28	22	5	12
19	3	27	12	7	44	6	21	12	11	69	19	8	6	17	94	14	2	26	9
20	9	10	22	13	45	13	6	21	1	70	2	21	21	10	95	5	29	17	4
21	27	5	14	9	46	16	27	2	14	71	3	12	24	8	96	10	17	25	11
22	5	23	16	28	47	21	25	10	3	72	25	19	5	30	97	1	24	15	8
23	13	18	10	6	48	18	11	27	7	73	8	3	18	20	98	27	15	6	20
24	20	1	28	26	49	4	3	15	23	74	20	15	27	5	99	20	30	11	7
25	6	14	27	17	50	11	18	13	26	75	28	4	16	21	00	12	23	29	2

1.1

$$\begin{split} \overline{r}_{C} &= \frac{1}{m_{\Sigma}} \sum m_{i} \overline{r_{i}} \;, \\ m_{\Sigma} &= \sum m_{i} \; - & ; \\ m_{i}, \; \overline{r_{i}} \; - & - & i - \\ & : \\ x_{C} &= \frac{1}{m_{\Sigma}} \sum m_{i} x_{i}; \quad y_{C} &= \frac{1}{m_{\Sigma}} \sum m_{i} y_{i}; \quad z_{C} &= \frac{1}{m_{\Sigma}} \sum m_{i} z_{i} \;, \\ x_{i}, y_{i}, z_{i} &- & i - & . \end{split}$$

$$m_{\Sigma}\overline{a}_C = \sum \overline{F}_i \qquad . \tag{1.1}$$

$$\begin{cases} m_{\Sigma}a_{Cx} = \sum F_{ix} & , \\ m_{\Sigma}a_{Cy} = \sum F_{iy} & , \\ m_{\Sigma}a_{Cz} = \sum F_{iz} & . \end{cases}$$
 (1.2)

: 1 , 2 3 , 4

1.2

4

$$s(t) = t^3 + \sin\frac{\pi}{3}t \qquad 2 \qquad ,$$

.

x.

$$\sum F_{ix} = -G_1 \sin \alpha - G_2 \sin \alpha;$$

$$\sum F_{iy} = N - G_1 \cos \alpha - G_2 \cos \alpha.$$

 $(G_1 = m_1 g, G_2 = m_2 g).$

$$\sum F_{ix} = -(m_1 + m_2)g \sin \alpha;$$

$$\sum F_{iy} = N - (m_1 + m_2)g \cos \alpha.$$
(1.3)

1.1

 $x_C = \frac{1}{m_{\Sigma}} \sum m_i x_i = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}; \quad y_C = \frac{1}{m_{\Sigma}} \sum m_i y_i = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}, \quad (1.4)$

$$x_{1}, y_{1} - x_{2}, y_{2} - 2,$$

$$x$$

$$x_{2}, y_{2} - x_{3},$$

$$x_{2} - x_{1} - \frac{b}{2} + s \cos \beta, \quad y_{2} = -s \sin \beta.$$

$$(1.4),$$

$$x_{C} = \frac{1}{m_{1} + m_{2}} \left[(m_{1} + m_{2})x_{1} + m_{2} \left(s \cos \beta - \frac{b}{2} \right) \right], \quad y_{C} = \frac{-m_{2}}{m_{1} + m_{2}} s \sin \beta.$$

$$\beta$$

$$ABC:$$

$$tg\beta = \frac{b/2}{b} = \frac{1}{2}.$$

$$cos\beta = \frac{1}{\sqrt{1 + tg^{2}\beta}} = \frac{2}{\sqrt{5}}, \quad \sin \beta = \sqrt{1 - \cos^{2}\beta} = \frac{1}{\sqrt{5}}.$$

5 ,

$$v_{Cx} = \frac{dx_C}{dt} = \frac{1}{m_1 + m_2} [(m_1 + m_2)\dot{x}_1 + m_2\dot{s}\cos\beta];$$

$$v_{Cy} = \frac{dy_C}{dt} = \frac{-m_2}{m_1 + m_2} \dot{s}\sin\beta.$$

.

$$a_{Cx} = \frac{dv_{Cx}}{dt} = \ddot{x}_C = \frac{1}{m_1 + m_2} [(m_1 + m_2)\ddot{x}_1 + m_2\ddot{s}\cos\beta],$$

$$a_{Cy} = \frac{dv_{Cy}}{dt} = \ddot{y}_C = \frac{-m_2}{m_1 + m_2} \ddot{s}\sin\beta.$$
(1.5)

$$6$$
 (1.3)

$$(m_1 + m_2)\ddot{x}_1 + m_2\ddot{s}\cos\beta = -(m_1 + m_2)g\sin\alpha; -m_2\ddot{s}\sin\beta = N - (m_1 + m_2)g\cos\alpha.$$
 (1.6)

(1.2)

$$N = (m_1 + m_2)g \cos \alpha - m_2 \ddot{s} \sin \beta.$$

$$(1.6)$$

$$x:$$

$$\ddot{x}_1 = -g \sin \alpha - \frac{m_2}{m_1 + m_2} \ddot{s} \cos \beta.$$

$$(1.7)$$

$$s(t) = t^3 + \sin \frac{\pi}{3}t,$$

$$\dot{s}(t) = 3t^2 + \frac{\pi}{3} \cos \frac{\pi}{3}t; \quad \ddot{s}(t) = 6t - \frac{\pi^2}{9} \sin \frac{\pi}{3}t.$$

$$(1.7):$$

$$\ddot{x}_1 = \frac{d\dot{x}_1}{dt} = -g \sin \alpha - \frac{m_2}{m_1 + m_2} \cos \beta \left(6t - \frac{\pi^2}{9} \sin \frac{\pi}{3}t\right).$$

$$t:$$

$$t:$$

$$\int_{\dot{x}_1(0)}^{\dot{x}_1(t)} d\dot{x}_1 = \int_0^t - \left[g \sin \alpha + \frac{m_2}{m_1 + m_2} \cos \beta \left(6t - \frac{\pi^2}{9} \sin \frac{\pi}{3}t\right)\right] dt.$$

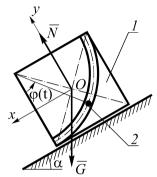
$$\dot{x}_1(0) = v_0.$$

$$\dot{x}_1|_{v_0}^{\dot{x}_1(t)} = -gt \sin \alpha|_0^t + \frac{m_1}{m_1 + m_2} \cos \beta \left(3t^2|_0^t + \frac{\pi}{3} \cos \frac{\pi}{3}t\right|_0^t).$$

$$\dot{x}_1(t) = -gt \sin \alpha - \frac{m_2}{(m_1 + m_2)} \cos \beta \left[3t^2 + \frac{\pi}{3} \left(\cos \frac{\pi}{3}t - 1\right)\right] + v_0.$$

$$\frac{dx_1}{dt} = -gt \sin \alpha - \frac{m_2}{(m_1 + m_2)} \cos \beta \left[3t^2 + \frac{\pi}{3} \left(\cos \frac{\pi}{3}t - 1\right)\right] + v_0.$$

$$\begin{split} G_1 &= m_1 g \,,\, G_2 = m_2 g \,\,, \\ &\sum F_{ix} &= (m_1 + m_2) g \sin\alpha \,; \\ &\sum F_{iy} &= N - (m_1 + m_2) g \cos\alpha . \end{split}$$


$$x_{C} = \frac{1}{m_{\Sigma}} \sum m_{i} x_{i} = \frac{m_{1} x_{1} + m_{2} x_{2}}{m_{1} + m_{2}};$$

$$y_{C} = \frac{1}{m_{\Sigma}} \sum m_{i} y_{i} = \frac{m_{1} y_{1} + m_{2} y_{2}}{m_{1} + m_{2}};$$

$$x_{1}, y_{1} - O);$$

$$x_{2}, y_{2} - Z$$

(1.8)

x

$$, \quad y_1(t) = 0.$$

1.2 x_2, y_2

:

$$x_2 = x_1 + \frac{b}{2} - b\sin\varphi; \quad y_2 = \frac{b}{2} - b\cos\varphi.$$

(1.5):

$$x_C = \frac{1}{m_1 + m_2} \left[(m_1 + m_2)x_1 + m_2 b \left(\frac{1}{2} - \sin \alpha \right) \right]; \ y_C = \frac{1}{m_1 + m_2} m_2 b \left(\frac{1}{2} - \cos \alpha \right).$$

$$v_{Cx} = \frac{dx_C}{dt} = \frac{1}{m_1 + m_2} [(m_1 + m_2)\dot{x}_1 - m_2 b\dot{\varphi}\cos\varphi];$$

$$v_{Cy} = \frac{dy_C}{dt} = \frac{1}{m_1 + m_2} m_2 b\dot{\varphi}\sin\varphi.$$

. ,

$$a_{Cx} = \frac{dv_{Cx}}{dt} = \dot{v}_{Cx} = \frac{1}{m_1 + m_2} \left[m_1 + m_2) \ddot{x}_1 - m_2 b \ddot{\varphi} \cos \varphi + m_2 b \dot{\varphi}^2 \sin \varphi \right];$$

$$a_{Cy} = \frac{dv_{Cy}}{dt} = \dot{v}_{Cy} = \frac{1}{m_1 + m_2} m_2 b(\ddot{\varphi}\sin\varphi + \dot{\varphi}^2\cos\varphi).$$

$$(m_1 + m_2)\ddot{x}_1 - m_2b(\ddot{\varphi}\cos\varphi - \dot{\varphi}^2\sin\varphi) = (m_1 + m_2)g\sin\alpha;$$

 $m_2b(\ddot{\varphi}\sin\varphi + \dot{\varphi}^2\cos\varphi) = N - (m_1 + m_2)g\cos\alpha.$ (1.9)

(1.9)

$$N = m_2 b(\ddot{\varphi}\sin\varphi + \dot{\varphi}^2\cos\varphi) + (m_1 + m_2)g\cos\alpha.$$

()
$$\ddot{x}_1 = g \sin \alpha + \frac{m_2 b}{m_1 + m_2} \left(\ddot{\varphi} \cos \varphi - \dot{\varphi}^2 \sin \varphi \right).$$
 (1.9)

$$\phi(t) = \frac{\pi}{3}t \,, \qquad \dot{\phi}(t) = \frac{\pi}{3}, \, \ddot{\phi}(t) = 0 \,.$$

$$\ddot{x}_1 = \frac{d\dot{x}_1}{dt} = g \sin \alpha + \frac{m_2 b}{m_1 + m_2} \left(0 \cdot \cos \frac{\pi}{3} t - \frac{\pi^2}{9} \sin \frac{\pi}{3} t \right).$$

7 .

$$\int_{\dot{x}_{1}(0)}^{\dot{x}_{1}(t)} d\dot{x}_{1} = \int_{0}^{t} \left[g \sin \alpha - \frac{m_{2}b}{m_{1} + m_{2}} \frac{\pi^{2}}{9} \sin \frac{\pi}{3} t \right] dt ,$$

$$\dot{x}_{1}(0) - \dot{x}_{1}(0) = v_{0} .$$

$$\dot{x}_1(t) = gt \sin \alpha - \frac{m_2 b \pi^2}{9(m_1 + m_2)} \frac{3}{\pi} \left[-\left(\cos \frac{\pi}{3} t - 1\right) \right] + v_0.$$

$$\frac{dx_1}{dt} = gt \sin \alpha - \frac{m_2 b\pi}{3(m_1 + m_2)} \left(1 - \cos \frac{\pi}{3} t \right) + v_0.$$

:

$$\int_{x_1(0)}^{x_1(t)} dx_1 = \int_{0}^{t} \left[gt \sin \alpha - \frac{m_2 b\pi}{3(m_1 + m_2)} \left(1 - \cos \frac{\pi}{3} t \right) + v_0 \right] dt.$$

$$x_1(t) = g \frac{t^2}{2} \sin \alpha - \frac{m_2 b \pi}{3(m_1 + m_2)} \left(t - \frac{3}{\pi} \sin \frac{\pi}{3} t \right) + v_0 t.$$

$$\vdots$$

$$x_1(t) = 9.8 \cdot 0.5t^2 \sin 30^\circ - 0.63 \left(t - 0.96 \sin \frac{\pi}{3} t \right) + 1t = 0.$$

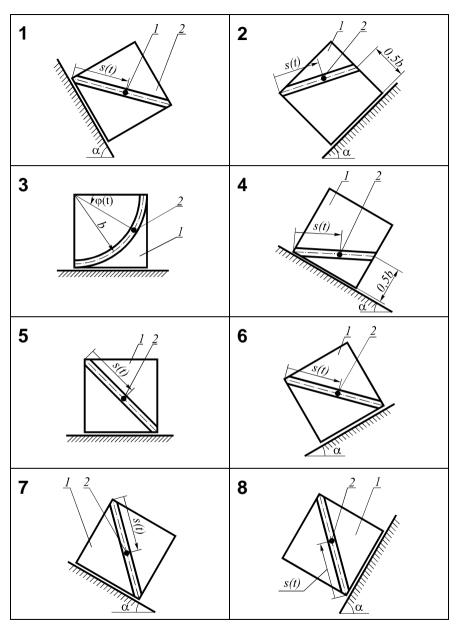
$$x_1(t) = 9.8 \cdot 0.5t^2 \sin 30^\circ - 0.63 \left(t - 0.96 \sin \frac{\pi}{3} t \right) + 1t =$$

$$= 2.45t^2 + 0.37t + 0.6 \sin \frac{\pi}{3} t \).$$

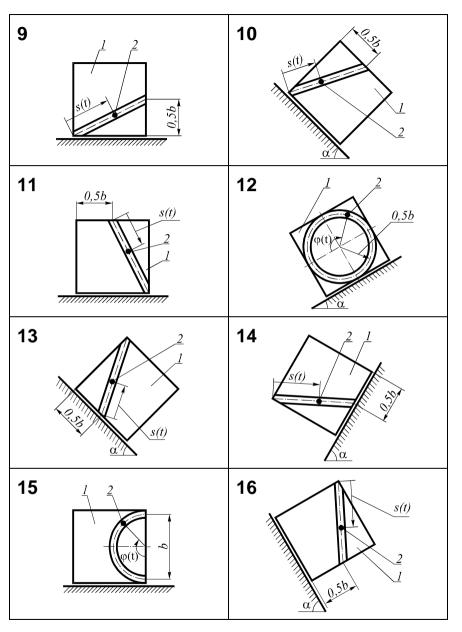
1.3 -4

α.

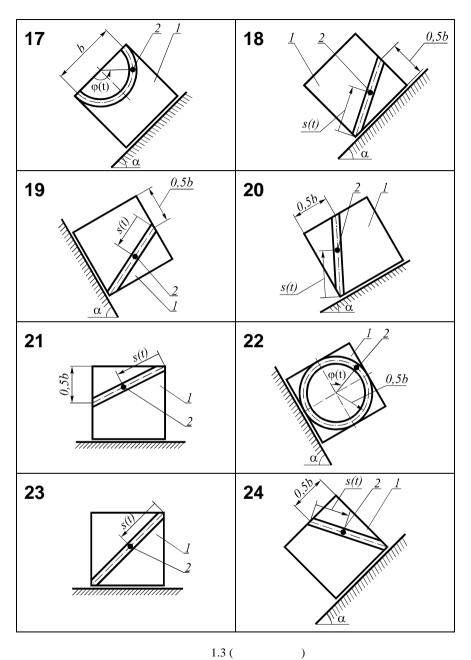
1 (1.3)
$$m_1$$
 b

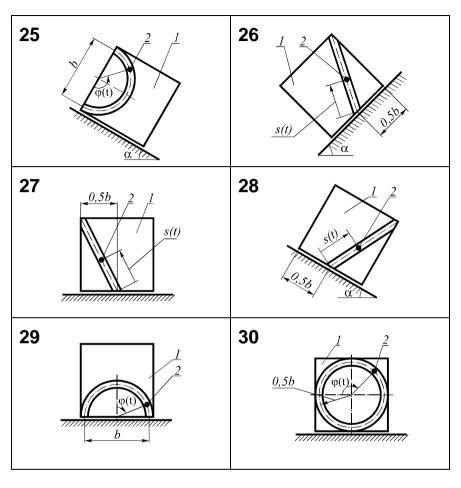

2 s(t) $\varphi(t)$. m_2 2 1.1,

1.1 --4


		,	b,	α,	v ₀ , /	s,	(0	
	m_1	m_2	υ,	α,	00,	5,	φ,	
1	40	15	1	60	2,5	$t+t^2+t^3$		
2	75	25	2	45	2	$2\sin\frac{\pi}{8}t$		
3	80	20	3	-	1,5	_	2t	
4	35	10	1	30	2	$t + 0.4t^3$		
5	40	15	1	-	0,5	1,5 sin <i>t</i>		
6	70	10	3	30	1,5	$t^2 + 0.9t^3$		

1.1


	,		1.		/	_	(0	
	m_1	m_2	b,	α,	<i>v</i> ₀ , /	s,	φ,	
7	40	9	2	30	2,5	$5t^2-t$	_	
8	30	20	1	60	3	$1,5t+t^3$	_	
9	35	5	1	_	1	$1,5t+t^3$ $1,5\left(1-\cos\frac{\pi}{2}t\right)$	_	
10	45	12	2	45	2,5	$t^2(1-t)$	_	
11	30	7	1	_	2	$1,5\sin\frac{\pi}{3}t$	_	
12	40	15	2	30	2,5	_	t	
13	50	15	3	45	1	$t^2 + 0.2t^4$ $t(2+t)$		
14	75	30	3	60	2,5	t(2+t)		
15	40	15	2	_	3	_	1,5 <i>t</i>	
16	60	10	3	60	2,5	$4 + 2t^3$		
17	75	25	3	45	2	_	0,5t	
18	80	20	2	45	1	$0.8\sin\frac{\pi}{6}t$		
19	40	10	1	60	2,5	$t^2(0.5+0.2t)$		
20	60	20	1	30	2	$t + 0.1t^2$	_	
21	80	15	3	_	1	$1-\cos\frac{\pi}{3}t$	_	
22	60	10	2	60	2,5	_	0,8t	
23	45	10	1	_	1,5	$2\sin\frac{\pi}{4}t$	_	
24	50	20	2	45	1,5	t(3+0,1t)		
25	70	20	2	30	1	_	$\frac{\pi}{3}t$	
26	35	5	1	45	3	$t + 0.5t^3$	_	
27	60	10	3	_	2	$\sin \pi t$		
28	40	15	2	30	1	$2 + t^2$	_	
29	65	10	3	-	1,5	_	2t	
30	60	15	2	_	2,5	_	$\frac{\pi}{4}t$	


1.3 (

1.3 (

1.3 (

1.3 (

2.1.1

.

 $m\overline{a}_C = \sum \overline{F}_i , \qquad (4.1):$

m- :

 \overline{a}_C - ; \overline{F}_i - i- .

.

 $J_z \varepsilon = \sum M_{iz} , \qquad (2.2)$

 J_z – z;

 M_{iz} – i -

φ. ,

, - .

 J_z

Oz .

 $J_z = \sum m_i h_1^2.$

 $J_z = \iiint_{(V)} \rho h^2 dV = \iiint_{(V)} \rho h^2 dx dy dz,$

 $\begin{array}{ccc} - & & & \\ h - & & & \\ & & & \\ \end{array} \hspace{1cm} x, y, z \hspace{1cm} \textit{Oz}.$

```
Cz,
                       J_C
  С,
                                          J_C = mi^2.
                                                                                          (2.3)
1
                                     J_C = \frac{1}{12} m l^2 \,.
2
                                                                               R:
                                                            m
                                       J_C = mR^2.
                                     J_C = \frac{1}{2} mR^2.
3
                                                                    R:
2.1.2
1
              φ;
3
5
```

2.2

```
2.1)
                                                                                                P=4 .
          2
       = 0.5 : m_1 = 50 , m_2 = 150 : R_2 = 20 , R_3 = 30 , r_2 = 10 , r_3 = 15 .
                                          : m_1 = 50 , m_2 = 150 , m_3 = 120 .
M
i_2 = 15 , i_3 = 20
                                                                                                          1
                                 \alpha = 60^{\circ}.
               f = 0,2.
                                                                                              \boldsymbol{A}
             t_1 = 0.6 ,
2.1).
                                                                                                          M_{\text{conp}}
                 2,
                                2
                                                3
    2
                                    1:
      )
                                                  2.2).
                                   (
                                                 \overline{G}_1;
       1
                                                                                                2.1
                                                                    \overline{F} ;
                                                                                                            \overline{T_1}.
                   1
                                                                               1
                                                  x;
                                                                                                       (2.1)
                                                m_1 a_{C_1 x} = T_1 - F - G_1 \sin \alpha;
               2.2
                                                m_1 a_{C_1 v} = N_1 - G_1 \cos \alpha,
```

```
1 ( C_1) x,
      a_{C_1x}, a_{C_1y} -
y.
                                                                                             x, 	 a_{C_1 y} = 0.
                                             1
                                        a_{C_1x}
        1 \ a_{C_1}.
                         : F = fN_1,
                                                                              -G_1 = m_1 g.
                                     m_1 a_{C_1} = T_1 - fN_1 - m_1 g \sin \alpha;
                                     0 = N_1 - m_1 g \cos \alpha.
                                                                                                              N_1
                                    m_1 a_{C_1} = T_1 - m_1 g(\sin \alpha + f \cos \alpha).
                                                                                                               (2.4)
                                       2:
      )
                                                                                                               2.3).
                                                       \overline{G}_2;
             2
                                                                             \overline{X}_2 \overline{Y}_2;
          O_2,
         \overline{T}_2;
                                               M
                                                                                                   3
                                                                                                                    2
                                                      \overline{N}_2
                                                                                            \overline{S}_2.
                                                                \overline{N}_2
                                                                    O_2).
                                                       2 (
                                              ) 2
                                                                                          ( .
                                                                                                                2.3).
                      2.3
                                                                               2
                                                                                                    2
      )
                                                                                       O_2.
                                                                (2.2):
                                       J_{O_2}\varepsilon_2 = -T_2R_2 + S_2r_2 - M \ ,
```

$$J_{O_{2}} = Q_{1}, \qquad Q_{2}, \qquad Q_{3}, \qquad Q_{2} = m_{2}i_{2}^{2} \cdot Q_{1}, \qquad Q_{2} = m_{2}i_{2}^{2} \cdot Q_{2}, \qquad Q_{3} = m_{2}i_{2}^{2} \cdot Q_{2} - q_{1}, \qquad Q_{3} = q_{2}i_{2}^{2} \cdot Q_{2} - q_{1}, \qquad Q_{3} = q_{2}i_{2}^{2} \cdot Q_{2} - q_{1}, \qquad Q_{3} = q_{2}i_{2}^{2} \cdot Q_{2} - q_{2} \cdot Q_{3}, \qquad Q_{3} = q_{3}i_{3}^{2} \cdot Q_{3}^{2} \cdot Q_{3}^{2$$

 $m_3 i_3^2 \varepsilon_3 = -S_2 R_3 + P r_3$. (2.6)

: $v_B = \omega_2 B O_2 = \omega_2 r_2; \quad v_B = \omega_3 B O_3 = \omega_3 R_3.$

 $\omega_2 r_2 = \omega_3 R_3$.

$$\frac{d(\omega_2 r_2)}{dt} = \frac{d(\omega_3 R_3)}{dt}.$$

$$\varepsilon_2 r_2 = \varepsilon_3 R_3. \tag{2.9}$$

3. (2.9) , (a_1, b_2) , (a_1, b_2) , (a_2, b_3) , (a_3, b_4) , (a_4, b_2) , $(a_4,$

$$\varepsilon_2 = \varepsilon_3 \frac{R_3}{r_2} \,. \tag{2.10}$$

 $(2.8), a_1$ $R_3 R_2$

$$a_1 = \varepsilon_3 \frac{R_3 R_2}{r_2} \,. \tag{2.11}$$

4 .
$$(2.4)$$
 C_1 , (2.5) C_2 . (2.4)
 C_2 . (2.4)

$$\begin{cases} m_1 \varepsilon_3 \frac{R_2 R_3}{r_2} = T_1 - m_1 g(\sin \alpha + f \cos \alpha); \\ m_2 i_2^2 \varepsilon_3 \frac{R_3}{r_2} = -T_1 R_2 + S_2 r_2 - M; \\ m_3 i_3^2 \varepsilon_3 = -S_2 R_3 + P r_3. \end{cases}$$
(2.12)

 $T_1;$ $S_2.$ (2.12)

$$T_{1} = m_{1} \varepsilon_{3} \frac{R_{2} R_{3}}{r_{2}} + m_{1} g (\sin \alpha + f \cos \alpha).$$

$$(2.12)$$

$$S_{2} = P \frac{r_{3}}{R_{3}} - m_{3} i_{3}^{2} \varepsilon_{3} \frac{1}{R_{3}}.$$

(2.12)

 $m_2 i_2^2 \varepsilon_3 \frac{R_3}{r_2} = -m_1 \varepsilon_3 \frac{R_2^2 R_3}{r_2} - m_1 g (\sin \alpha + f \cos \alpha) R_2 + \frac{R_3}{r_2} - \frac{R_3}{r_2} = -m_1 \varepsilon_3 \frac{R_2^2 R_3}{r_2} - m_2 g (\sin \alpha + f \cos \alpha) R_2 + \frac{R_3}{r_2} - \frac{$

$$r_2$$
 r_2 $+ P \frac{r_3}{R_3} r_2 - m_3 i_3^2 \epsilon_3 \frac{r_2}{R_3} - M.$

$$\varepsilon_{3} = \frac{P\frac{r_{3}}{R_{3}}r_{2} - m_{1}g(\sin\alpha + f\cos\alpha)R_{2} - M}{m_{1}\frac{R_{2}^{2}R_{3}}{r_{2}} + m_{2}i_{2}^{2}\frac{R_{3}}{r_{2}} + m_{3}i_{3}^{2}\frac{r_{2}}{R_{3}}}.$$

$$\epsilon_3 = \frac{4000 \cdot \frac{0,15}{0,3} \cdot 0,1 - 50 \cdot 9,8 \cdot (\sin 60^\circ + 0,2\cos 60^\circ) \cdot 0,2 - 50}{50 \cdot \frac{0,2^2 \cdot 0,3}{0,1} + 150 \cdot 0,15^2 \cdot \frac{0,3}{0,1} + 120 \cdot 0,2^2 \cdot \frac{0,1}{0,3}} \,.$$

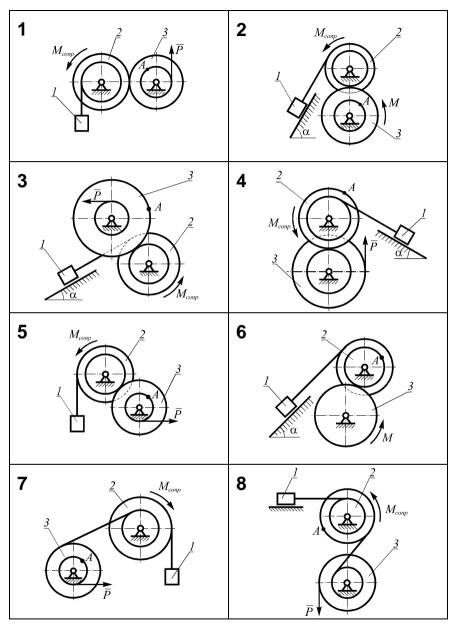
$$\varepsilon_3 = \frac{200 - 94,67 - 50}{6 + 10,13 + 1,6} = \frac{55,33}{17,73} = 3,12 \left(\frac{}{} \right).$$
3.

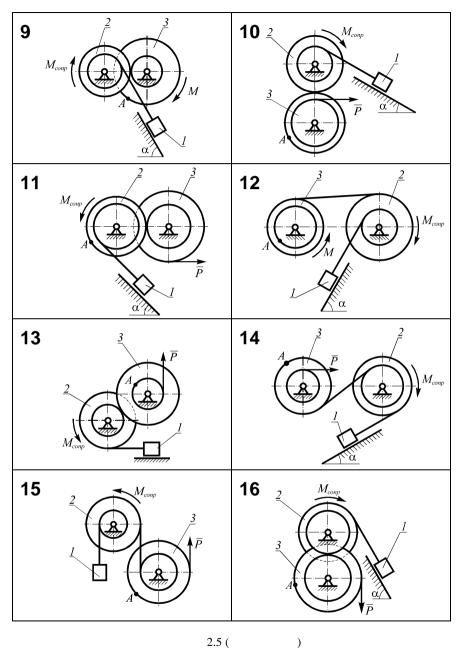
$$\varepsilon_3 = \frac{d\omega_3}{dt} \ .$$

$$\int_{\omega_{30}}^{t_1} d\omega_3 = \int_{0}^{t_1} \varepsilon_3 dt.$$

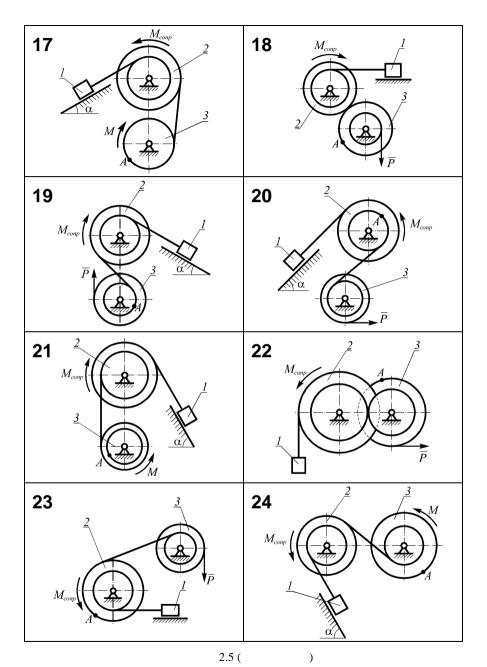
$$\int_{0}^{t_2} d\omega_3 = \int_{0}^{t_1} \varepsilon_3 dt.$$

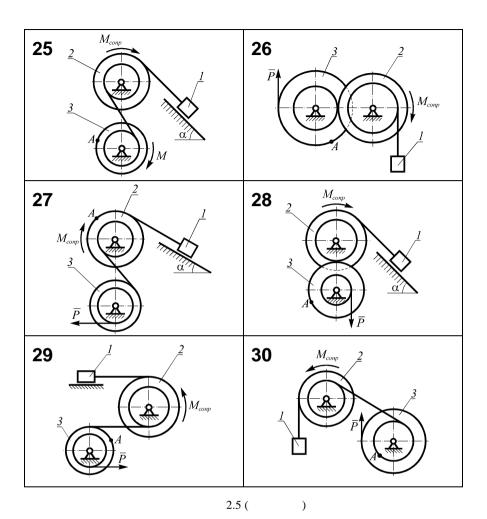
$$\int_{0}^{t_2} d\omega_3 = \int_{0}^{t_2} \varepsilon_3 dt.$$


$$\begin{array}{rcl} : & _{3} & = & _{3}t_{1}. \\ A & \\ a_{A} = AO_{3}\sqrt{{\varepsilon_{3}}^{2} + {\omega_{3}}^{4}} = r_{3}\sqrt{{\varepsilon_{3}}^{2} + {\varepsilon_{3}}^{4}t_{1}^{4}} \ . \end{array}$$


$$a_A = 0.15\sqrt{3.12^2 + 3.12^4 \cdot 0.6^4} = 0.15\sqrt{9.73 + 12.23} = 0.7\left(\frac{1}{2}\right).$$

$$M \ (2.5). \qquad P \\ M \ (2.5). \qquad , \qquad : m_1, m_2, m_3. \\ \vdots \ R_2, \ R_3, \ r_2, \ r_3. \qquad \vdots \ i_2, \ i_3. \\ f \ . \qquad A \qquad t_1, \qquad \vdots \\ R: \ i = \frac{1}{\sqrt{2}}R \ .$$


2.1 - -5


	,				,	c	Р,	М,	М ,			
	m_1	m_2	m_3	R_2	r_2	R_3	r_3		f			
1	90	120	100	30	20	50	20	-	-	1		0,1
2	60	80	120	60	40	40	15	60	0,2	-	2	0,5
3	100	100	150	50	25	70	20	30	0,1	4		1,1
4	100	130	160	60	45	50	25	30	0,2	3	-	0,9
5	65	200	100	40	20	40	10	-	-	2,5	-	0,4
6	80	150	170	50	30	60	_	45	0,3	-	6	1
7	100	120	110	80	30	60	20	_	-	5	-	1,4
8	50	125	150	70	40	40	20	_	0,1	4	-	0,8
9	90	100	170	40	20	80	30	60	0,15	-	3	0,6
10	60	110	150	50	20	60	45	30	0,2	6	-	2
11	100	130	130	40	30	40	25	45	0,4	7	-	2,1
12	55	100	80	60	15	30	20	60	0,1	-	4	0,9
13	70	130	165	50	20	70	30	-	0,05	5	-	1,3
14	100	170	120	80	60	60	30	30	0,25	6	-	2.4
15	130	90	180	40	10	80	40	-	-	4	-	0,4
16	60	100	40	60	45	90	50	60	0,3	4	-	0,2
17	90	180	110	80	40	50	_	30	0,1	_	2	0,1
18	80	100	100	80	50	80	40	-	0,2	2	-	0,7
19	100	130	90	60	30	40	20	30	0,05	3	-	1,4
20	110	160	70	80	40	30	25	45	0,15	5	-	1,6
21	50	120	100	80	55	60	40	60	0,3	-	3	0,7
22	100	140	60	100	70	50	30	_	_	2,5	-	0,3
23	75	100	65	70	35	40	20	-	0,15	1,8	-	0,1
24	60	130	100	90	40	60	30	60	0,1		2,5	0,6
25	45	100	85	80	30	50	35	45	0,2	Ī	0,9	0,1
26	100	90	130	70	55	100	40	_	-	3	-	1
27	75	100	60	80	40	40	30	30	0,1	2,2	-	0,2
28	80	110	110	60	30	60	35	45	0,2	4,4	-	1,4
29	100	160	200	50	20	70	45	-	0,22	2	-	0,5
30	90	180	210	60	25	90	40	-	-	1,7	-	0,1

2.5 (

3.1

, , ,

,

 $m\overline{a}_C = \sum \overline{F}_i , \qquad (3.1)$

 $m, \ \overline{a}_C - \ \overline{F}_i - i$;

-1 ,

 $J_C \varepsilon = \sum M_{iC}$.

 $\epsilon - m_{iC} - i - m_{iC}$, (3.1)

 $\begin{cases} ma_{Cx} = \sum F_{ix}, \\ ma_{Cy} = \sum F_{iy}, \\ J_C \varepsilon = \sum M_{iC}. \end{cases}$ (3.2)

(3.2)

y - x.

.

4 5 6 7 8 a_C ω. M_c $M_c = \delta N$, δ – *N* – \overline{F} \overline{F} \overline{N} . (3.3) \boldsymbol{A} \boldsymbol{A} С, \boldsymbol{A}

 $\overline{v}_A = \overline{v}_C + \overline{v}_{AC} \; .$

 \overline{v}_{AC} – *C*. \boldsymbol{A} AC, \boldsymbol{A} *C*. \boldsymbol{A} ω $v_{AC} = \omega AC \ .$ \boldsymbol{A} $v_A = \omega h_A$, h_A – \boldsymbol{A} 3.2 m = 300F = 1(3.1). R = 40r = 20i = 30 $\delta = 3$ f = 0,2. $\alpha = 60^{\circ}, \beta = 30^{\circ}.$ $t_1 = 0,4$. 1 3.2). \overline{F} ; 3.1 \overline{N} ; M_c . M F 2 x

3.2

3.2).

3 (3.2)

$$\begin{cases} ma_{Cx} = \sum F_{ix}, \\ ma_{Cy} = \sum F_{iy}, \\ J_C \varepsilon = \sum M_{iC}; \end{cases} \begin{cases} ma_{Cx} = F \cos \beta + G \sin \alpha + F , \\ ma_{Cy} = N - G \cos \alpha + F \sin \beta, \\ J_C \varepsilon = FR + F r - M_c. \end{cases}$$
(3.4)

 $a_C = a_{Cx}$.

 $: J_C = mi^2.$

 $\omega = v_C/r$.

$$\varepsilon = \frac{d\omega}{dt} = \frac{1}{r} \frac{dv_C}{dt} = \frac{a_C}{r} \,. \tag{3.5}$$

(3.4), $\begin{cases} ma_C = F\cos\beta + mg\sin\alpha + F &, \\ 0 = N - mg\cos\alpha - F\sin\beta, \\ mi^2 \frac{a_C}{r} = FR - F & r - \delta N. \end{cases}$ (3.6)

5 (3.6).

$$N = mg\cos\alpha + F\sin\beta. \tag{3.7}$$

$$F = -F\cos\beta - mg\sin\alpha + ma_C. \tag{3.8}$$

$$N \quad F$$

(3.6):

$$mi^{2}\frac{a_{C}}{r} = FR + Fr\cos\beta + mgr\sin\alpha - ma_{C}r - \delta F\sin\beta - \delta mg\cos\alpha.$$

$$a_{C} = \frac{F(R + r\cos\beta - \delta\sin\beta) + mg(r\sin\alpha - \delta\cos\alpha)}{m\left(\frac{i^{2}}{r} + r\right)}.$$
(3.8):

 $F = -F\cos\beta - mg\sin\alpha + \frac{r}{i^2 + r^2} \Big[F(R + r\cos\beta - \delta\sin\beta) + mg(r\sin\alpha - \delta\cos\alpha) \Big].$

$$F = -1000\cos 30^{\circ} - 294\sin 60^{\circ} + \frac{0.2}{0.04 + 0.09} \times$$

$$\times \left[1000 \cdot (0.4 + 0.2\cos 30^{\circ} - 0.03\sin 60^{\circ}) + 294 \cdot (0.2\sin 30^{\circ} - 0.03\cos 60^{\circ})\right] =$$

$$= -866.03 - 254.61 + 1.54 \cdot \left[547.22 + 24.99\right] = -239.44 \text{ (H)}.$$

 \overline{F}

.

(3.7)

 $N = 1000 \sin 30^{\circ} + 300 \cdot 9.8 \cos 60^{\circ} = 647$ ().

$$F^* = fN = 0.2 \cdot 647 = 129.4$$
 ().

, , , ,

(3.5)

7 .

(3.4).
$$(G = mg); (J_C = mi^2);$$

$$(a_{Cy} = 0, a_{Cx} = a_C). \varepsilon \neq \frac{a_C}{r}.$$

$$(3.3) |F| = fN.$$

$$, F = fN.$$

$$, F = fN.$$

$$, (3.4)$$

$$\begin{cases} ma_C = F \cos \beta + mg \sin \alpha - fN, \\ 0 = N - F \sin \beta - mg \cos \alpha, \\ mi^2 \varepsilon = FR + fNr - \delta N. \end{cases}$$

$$(3.9) \qquad \vdots N, a_C, \varepsilon.$$

$$a_C = \frac{F}{m} \cos \beta + g \sin \alpha - f \frac{N}{m},$$

$$\varepsilon = \frac{1}{mi^2} [FR + N(fr - \delta)]$$

$$a_C = \frac{1000}{300} \cos 30^\circ + 9,8 \sin 60^\circ - 0,2 \cdot \frac{647}{300} = 2,87 + 8,49 - 0,43 = 10,93 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [400 + 6,47] = 15,05 \left(\frac{1}{2}\right).$$

$$\varepsilon = \frac{1}{300 \cdot 0,09} \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,03)] = 0,037 \cdot [1000 \cdot 0,4 + 647 \cdot (0,04 - 0,0$$

 v_{C0} $v_{C0} = 0.$

8

 a_C

$$v_{C}(t_{1}) = a_{C}t_{1} = 10,93 \cdot 0,4 = 4,37 \left(- \right).$$

$$C$$

$$A$$

$$\vdots \quad \varepsilon = \frac{d\omega}{dt}.$$

$$t = 0 \quad t_{1}. \quad ,$$

$$\vdots \quad \omega(t_{1}) = \int_{0}^{t_{1}} \varepsilon dt = \varepsilon t_{1} = 15,05 \cdot 0,4 = 6,02 \left(- \right).$$

$$A.$$

$$(3.2) \quad \overline{v}_{A} = \overline{v}_{C} + \overline{v}_{AC}.$$

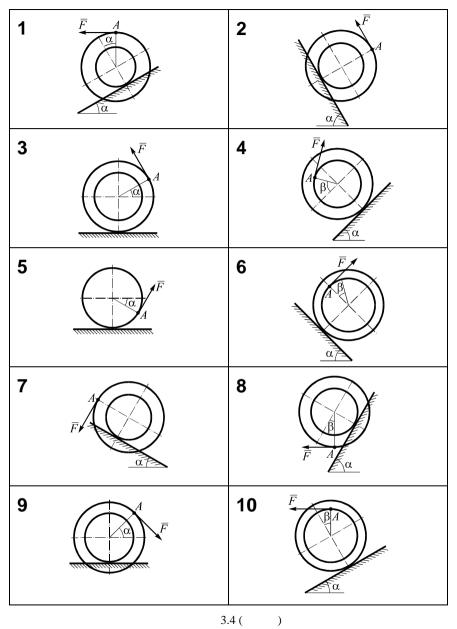
$$\overline{v}_{AC}$$

$$A \quad v_{AC} = \omega AC = \omega R = 6,02 \cdot 0,4 = 2,41 \quad (\ / \).$$

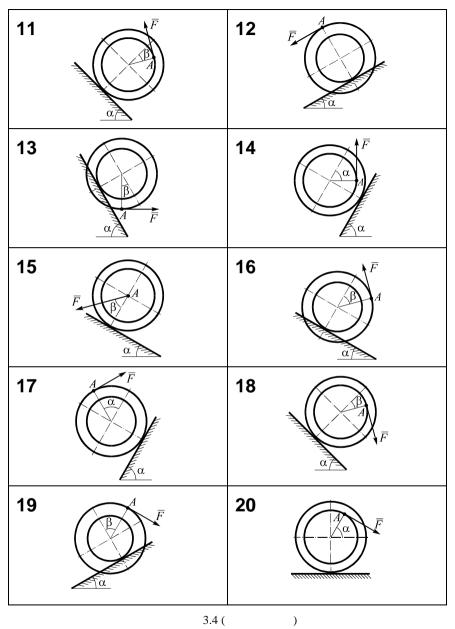
$$AC \quad 3.3).$$

$$\overline{v}_{C} \quad \overline{v}_{AC}$$

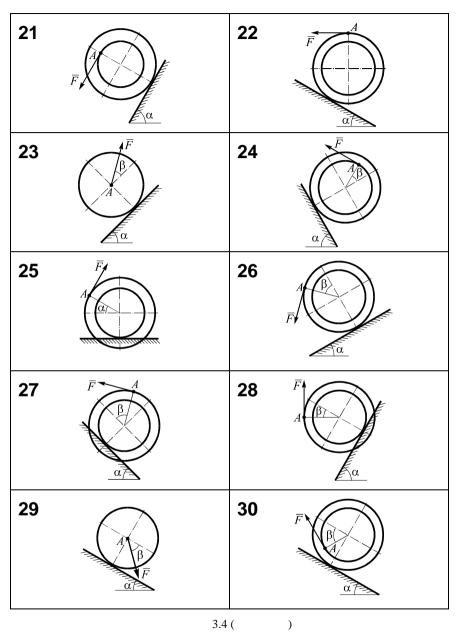
$$\overline{v}_{C} \quad 3.3).$$


$$\overline{v}_{C} \quad 3.3).$$

$$\overline{v}_{C} \quad 180^{\circ} - \beta.$$


$$v_{A} = \sqrt{4,37^{2} + 2,41^{2} + 2,437 \cdot 2,41 \cdot \cos 30^{\circ}} = \sqrt{19,1 + 5,81 + 18,24} = 6,57 \left(- \right).$$

3.3 -6


m F (3.4). R r. $\delta,$ f. $t_1.$ A

3.4 (

3.4 (

4

4.1

4.1.1

 \overline{Q}

,

 m_i , v_i –

 $\overline{Q} = \sum m_i \overline{v}_i^{},$ i-

:

 $\overline{Q}=m_{\Sigma}\overline{v}_{C}\,.$

:

 $\frac{d\overline{Q}}{dt} = \sum \overline{F}_j \qquad .$

:

 t_1

 \overline{S}_j –

 $\overline{Q} - \overline{Q}_0 = \sum \overline{S}_j \qquad ,$ \overline{F}_j

 $\overline{S}_j = \int_0^{t_1} \overline{F}_j dt.$

0

 t_1 ,

)

 $\overline{L}_O = \sum \overline{L}_{iO} = \sum \overline{r}_i \times m_i \overline{v}_i \; , \label{eq:loss}$

$$\overline{r_i}$$
 - i - .

$$\frac{d\overline{L}_O}{dt} = \sum \overline{M}_{jO} \quad ,$$

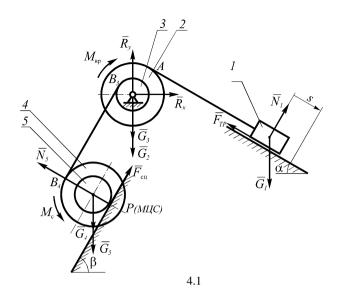
$$\frac{d\overline{L}_O}{dt} = \sum \overline{M}_{jO} \quad ,$$

$$\overline{M}_{jO} \quad - \qquad \qquad \overline{F}_j \qquad O,$$

$$\overline{M}_j \quad = \overline{r}_j \times \overline{F}_j \quad ,$$

$$\overline{r}_j$$
 - \overline{F}_j .

4.1.2


m v

$$T = \frac{mv^2}{2} .$$

$$T = \frac{J_z \omega^2}{2} ,$$

 J_z – ω –

```
).
                                         A(\overline{F}) = A(\overline{N}) = 0.
     4.1.3
     1
     2
     3
     4
     5
                                           (4.1),
              v_1
                                                        s.
     4.2
: m_1 = 4m, m_2 = 3m, m_3 = 2m, m_4 = 2m, m_5 = m, r_3 = 0.4 ; r_4 = 0.4 ; r_5 = 0.2 . 2 - 5
                                                                                                   : r_2 = 0.5 ;
          \alpha = 30^{\circ}, \beta = 60^{\circ}.
                                                                                                   M = mgr_2.
             4
                                                                             M_{\rm c}=2mgr_5.
     1
                                                                                     4.1)
                                                    T_0 = 0.
                                                                                                             (4.2)
```


,
$$T = T_1 + T_2 + T_3 + T_4 + T_5 ,$$

$$T_i$$
 – i - $(i = 1, ..., 5)$.

 v_1 .

, . . ,
$$T_1 = \frac{m_1 v_1^2}{2} .$$

$$\vdots$$

$$T_2 = \frac{J_2 \omega_2^2}{2} ,$$

$$T_2 = \frac{J_2 \omega_2^2}{2}$$

$$($$
 $O);$ $\omega_2 2.$

 ω_4

4

 v_C

,
$$v_C = \omega_5 CP = \omega_5 r_5$$
.
 $T_5 = \frac{1}{2} m_5 \omega_5^2 r_5^2 + \frac{1}{4} m_5 r_5^2 \omega_5^2 = \frac{3}{4} m_5 \omega_5^2 r_5^2$.
4 5 ,

$$\omega_5 = \omega_4 = v_1 \frac{r_3}{r_2(r_4 + r_5)}.$$

$$T_5 = \frac{3}{4} m_5 v_1^2 \left(\frac{r_3 r_5}{r_2 (r_4 + r_5)} \right)^2.$$

$$T = \frac{m_1}{2} v_1^2 + \frac{m_2}{4} v_1^2 + \frac{m_3}{4} v_1^2 \left(\frac{r_3}{r_2}\right)^2 + \frac{m_4}{4} v_1^2 \frac{r_3^2 \left(r_4^2 + 2r_5^2\right)}{r_2^2 \left(r_4 + r_5\right)^2} + \frac{3}{4} m_5 v_1^2 \left(\frac{r_3 r_5}{r_2 \left(r_4 + r_5\right)}\right)^2 = \frac{1}{2} m v_1^2 \left[4 + \frac{3}{2} + \left(\frac{r_3}{r_2}\right)^2 + \frac{r_3^2 \left(r_4^2 + 2r_5^2\right)}{r_2^2 \left(r_4 + r_5\right)^2} + \frac{3}{2} \left(\frac{r_3 r_5}{r_2 \left(r_4 + r_5\right)}\right)^2\right].$$

: $T = 0.5mv_1^2 \left[4 + 1.5 + \left(\frac{0.4}{0.5} \right)^2 + \frac{0.16(0.16 + 0.08)}{0.25 \cdot 0.6^2} + 1.5 \left(\frac{0.4 \cdot 0.2}{0.5 \cdot 0.6} \right)^2 \right] =$ $= 0.5mv_1^2 \left[5.5 + 0.64 + 0.43 + 0.11 \right] = 3.34mv_1^2.$ (4.6)

$$\sum A_j = 0. (4.7)$$

$$\overline{G_1}, \overline{G_2}, \overline{G_3}, \overline{G_4}, \overline{G_5}; \qquad \overline{F} ; \qquad 5$$

$$\overline{F} ; \qquad \overline{N_1}, \overline{N_5};$$

$$\overline{R_x}, \overline{R_y}; \qquad M \qquad M_c.$$

$$\sum A_j = A(\overline{G_1}) + A(\overline{F}_-) + A(\overline{N_1}) + A(\overline{R_x}) + A(\overline{R_y}) + A(\overline{G_2}) + A(\overline{G_3}) + \\
+ A(M_-) + A(\overline{G_4}) + A(\overline{G_5}) + A(\overline{N_5}) + A(M_-) + A(\overline{F}_-).$$

$$\overline{N_1}$$

$$A(\overline{N_1}) = 0.$$

$$\overline{R_x}, \overline{R_y}, \overline{G_2}, \overline{G_3} \qquad O.$$

$$A(\overline{R_x}) = A(\overline{R_y}) = A(\overline{G_2}) = A(\overline{G_3}) = 0.$$

$$\overline{F}$$

$$5, \qquad A(\overline{F}_-) = A(\overline{N_5}) = 0.$$

$$\overline{F}$$

$$5, \qquad A(\overline{F}_-) = A(\overline{N_5}) = 0.$$

$$\overline{F}$$

$$7, \qquad \overline{F}$$

$$7, \qquad \overline{F_{yy}}$$

$$7,$$

$$M$$
 ϕ_4 4 $A(M) = -M \phi_4$.

s (4.3),

$$\varphi_4 = s \frac{r_3}{r_2(r_4 + r_5)} \; .$$

$$A(M) = -M s \frac{r_3}{r_2(r_4 + r_5)}$$
.

$$\sum A_j = m_1 g s \sin \alpha - f m_1 g s \cos \alpha + M \quad s \frac{1}{r_2} - (m_4 + m_5) g s \sin \beta \frac{r_3 r_5}{r_2 (r_4 + r_5)} - M \quad s \frac{r_3}{r_2 (r_4 + r_5)}.$$

$$\sum A_j = mgs \left[4\sin\alpha - 4f\cos\alpha + 1 - 3\sin\beta \frac{r_3r_5}{r_2(r_4 + r_5)} - 2\frac{r_3r_5}{r_2(r_4 + r_5)} \right].$$

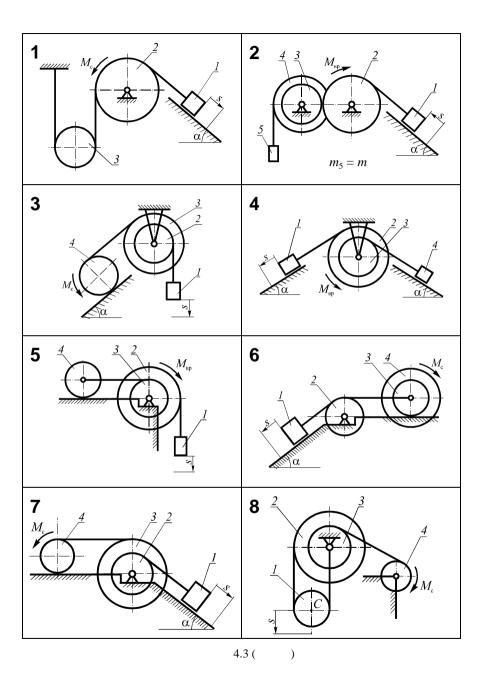
$$\sum A_j = 9.8ms \left[4\sin 30^\circ - 4\cdot 0.2\cos 30^\circ + 1 - (3\sin 60^\circ + 2)\cdot \frac{0.4\cdot 0.2}{0.5\cdot 0.9} \right] = (4.8)$$

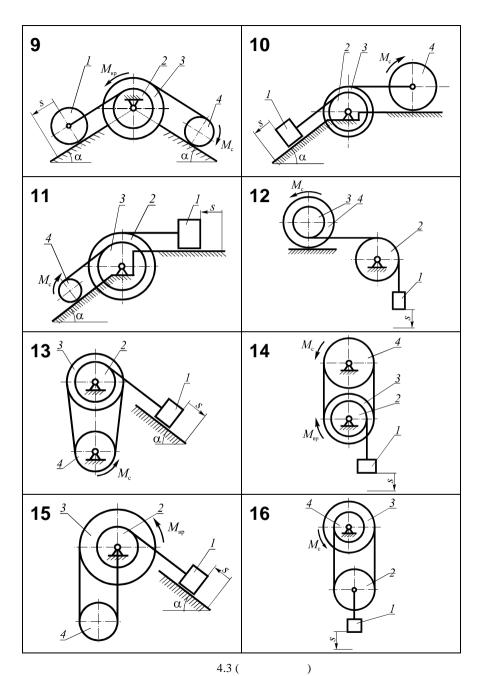
$$= 10.68ms.$$

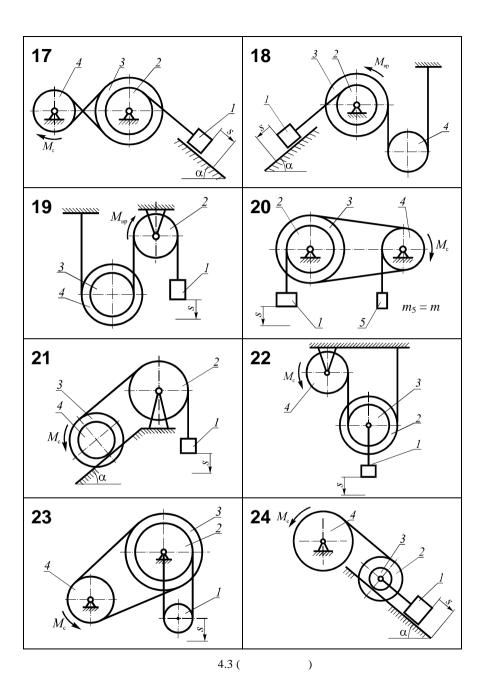
:
$$T - T_0 = \sum A_j + \sum A_j . \tag{4.2}, (4.6) - (4.8)$$

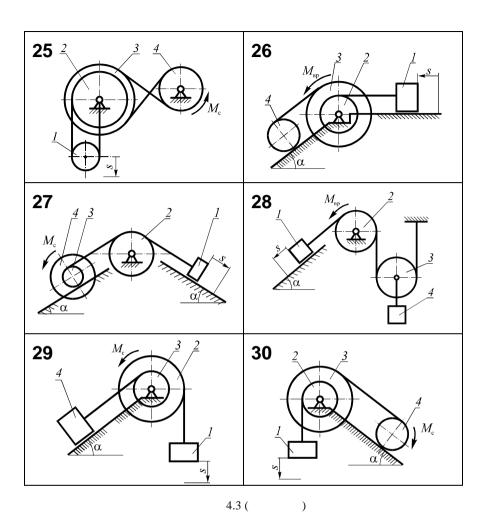
$$3,34mv_1^2 = 10,68ms$$
.

$$v_1 = \sqrt{\frac{10,68}{3,34}s} = 1,79\sqrt{s} \ .$$


4.3 -7


 $M_{
m c}$.


4.1 – **-7**


							,		, .	f	α,
	m_1	m_2	m_3	m_4	R_2	r_3	r_4	M	$M_{\rm c}$	J	
1	3 <i>m</i>	3 <i>m</i>	m		30	15	_	_	mgr_2		
2	2 <i>m</i>	2 <i>m</i>	m	2 <i>m</i>	40	10	30	mgr_2	_	0,3	60
3	5 <i>m</i>	m	2 <i>m</i>	m	10	20	15	_	mgr_4		45
4	4 <i>m</i>	m	3 <i>m</i>	m	20	15	_	mgr_3	_	0,1	30
5	3 <i>m</i>	2 <i>m</i>	m	2 <i>m</i>	40	20	20	$2mgr_2$	_	_	_
6	5 <i>m</i>	m	m	2 <i>m</i>	15	20	30	_	mgr_4	0,2	45
7	5 <i>m</i>	m	2 <i>m</i>	m	20	40	10		$2mgr_4$	0,1	60
8	2 <i>m</i>	3 <i>m</i>	m	m	15	30	10	_	$3mgr_4$		_
9	3 <i>m</i>	m	2 <i>m</i>	2 <i>m</i>	10	20	10	mgr_3	mgr_4	_	45
10	6 <i>m</i>	m	2 <i>m</i>	3 <i>m</i>	15	20	20	_	mgr_4	0,3	60
11	2 <i>m</i>	3 <i>m</i>	2 <i>m</i>	m	40	30	10	_	mgr_4	0,1	60
12	3 <i>m</i>	m	m	2 <i>m</i>	20	20	30	_	mgr_3	_	_

			,			, .			α,		
	m_1	m_2	m_3	m_4	r_2	r_3	r_4	М	$M_{\rm c}$	f	,
13	4 <i>m</i>	2 <i>m</i>	3 <i>m</i>	2 <i>m</i>	30	40	25	_	$2mgr_4$	0,2	30
14	5 <i>m</i>	m	2 <i>m</i>	2 <i>m</i>	25	30	30	$2mgr_3$	mgr_4		
15	6 <i>m</i>	m	3 <i>m</i>	2 <i>m</i>	20	40	20	$2mgr_2$		0,1	30
16	2 <i>m</i>	4 <i>m</i>	2 <i>m</i>	m	40	15	65	_	$2mgr_4$		
17	3 <i>m</i>	2 <i>m</i>	3 <i>m</i>	m	30	40	25	_	mgr_4	0,3	45
18	4 <i>m</i>	m	3 <i>m</i>	2 <i>m</i>	20	40	30	mgr_3		0,2	60
19	2 <i>m</i>	2 <i>m</i>	2 <i>m</i>	3 <i>m</i>	20	30	40	$3mgr_2$			
20	4 <i>m</i>	2 <i>m</i>	3 <i>m</i>	2 <i>m</i>	35	50	20	_	mgr_4		
21	6 <i>m</i>	2 <i>m</i>	2 <i>m</i>	m	60	40	30	_	mgr_3		60
22	М	3 <i>m</i>	2 <i>m</i>	2 <i>m</i>	40	50	20	_	$2mgr_4$		
23	3 <i>m</i>	3 <i>m</i>	4 <i>m</i>	2 <i>m</i>	30	40	30	_	mgr_4		
24	4 <i>m</i>	m	2 <i>m</i>	3 <i>m</i>	10	20	30	_	mgr_4	0,2	45
25	2 <i>m</i>	3 <i>m</i>	4 <i>m</i>	2 <i>m</i>	25	30	20	_	$3mgr_4$		
26	3 <i>m</i>	m	2 <i>m</i>	5 <i>m</i>	30	50	20	mgr_3			60
27	6 <i>m</i>	2 <i>m</i>	m	3 <i>m</i>	40	15	30	_	$2mgr_3$	0,1	30
28	5 <i>m</i>	m	2 <i>m</i>	m	30	40		mgr_2		0,2	60
29	7 <i>m</i>	3 <i>m</i>	2 <i>m</i>	3 <i>m</i>	50	30	_	_	mgr_2	0,3	60
30	6 <i>m</i>	m	2 <i>m</i>	2 <i>m</i>	20	40	15	_	mgr_4	_	45

() 1 . 2 :) 3 4 5 . 6 7 8

9			,	-
	()		,
10		· ·		
		·		-
				- - -
		,		
11	;			
12		()		
				-
•		;		-
13				-
_			,	, ,
14				- - ,
15				,
		· ,)	:
16			,	

17 ;

20 -

21 ; . . .

)

15.11.2006 . 60×84 ¹/₁₆.

02330/0133394 19.07.2004 . 02330/0148780 30.04.2004 . 246053, . , . , , 34